Metallurgical Transactions

, Volume 5, Issue 4, pp 891–897 | Cite as

The low cycle fatigue of three wrought nickel-base alloys

  • H. F. Merrick
Mechanical Behavior

Abstract

The low cycle fatigue behavior of three wrought nickel-base alloys, alloy 901, Waspaloy and alloy 718, has been examined at both room temperature and 811 K (1000°F). The fatigue properties can be rationalized in terms of the Manson-Coffin equation relating total strain range with the number of cycles to failure. For a given total strain range the fatigue life of the alloys at 811 K (1000°F) is substantially less than at room temperature. Microstructural examination revealed that crack nucleation and initial propagation was of classical stage I type. The cracks develop at the surface of test specimens and propagate along slip planes. Evidence is presented to relate the observed fatigue softening with shear and dissolution of γ precipitates.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. H. Wells and C. P. Sullivan:Tram. ASM, 1964, vol. 67, p. 841.Google Scholar
  2. 2.
    C. H. Wells and C. P. Sullivan:Trans. ASM, 1965, vol. 58, p. 391.Google Scholar
  3. 3.
    C. H. Wells and C. P. Sullivan:Trans. ASM, 1967, vol. 60, p. 217.Google Scholar
  4. 4.
    C. H. Wells and C. P. Sullivan:Trans. ASM, 1968, vol. 61, p. 149.Google Scholar
  5. 5.
    M. Gell and G. R. Leverant:Trans. TMS-AIME, 1968, vol. 242, p. 1869.Google Scholar
  6. 6.
    G. R. Leverant and M. Gell:Trans. TMS-AIME, 1969, vol. 245, p. 1167.Google Scholar
  7. 7.
    M. Gell, G. R. Leverant, and C. H. Wells:Achievement of High Fatigue Resistance in Metals and Alloys, p. 113, ASTM STP 467, 1970.Google Scholar
  8. 8.
    L. F. Coffin, Jr.:Thermal and High-Strain Fatigue, Monograph and Report Series No. 32, p. 171, The Metals and Metallurgy Trust, 1967.Google Scholar
  9. 9.
    T. Endo and J. Morrow:J. Mater., 1969, vol. 4, p. 159.Google Scholar
  10. 10.
    C. H. Wells:Acta Met, 1969, vol. 17, p. 443.CrossRefGoogle Scholar
  11. 11.
    L. F. Coffin, Jr.:J. Mater., 1971, vol. 6, p. 388.Google Scholar
  12. 12.
    T. Broom, J. A. Mazza, and V. N. Whittaker:J. Inst. Metals, 1957-58, vol. 86, p. 17.Google Scholar
  13. 13.
    J.B. Clark and A. J. McEvily:Acta Met., 1964, vol. 12, p. 81.Google Scholar
  14. 14.
    C. Laird and G. Thomas:Int. J. Fract. Mech., 1967, vol. 3, p. 81.Google Scholar
  15. 15.
    J. T. McGrath and W. J. Bratina:Phil Mag., 1965, vol. 12, p. 1293.Google Scholar
  16. 16.
    D. V. Wilson and J. K. Tromans:Acta Met, 1970, vol. 18, p. 1197.CrossRefGoogle Scholar
  17. 17.
    C. E. Feltner and P. Beardmore:Achievement of High Fatigue Resistance in Metals and Alloys, p. 77, ASTM STP 467,1970.Google Scholar

Copyright information

© American Society for Metals, The Melallurgical Society of AIME 1974

Authors and Affiliations

  • H. F. Merrick
    • 1
  1. 1.Paul D. Merica Research LaboratoryThe International Nickel Company, Inc.Suffern

Personalised recommendations