Metallurgical Transactions A

, Volume 13, Issue 8, pp 1337–1345 | Cite as

The morphology, crystallography, and chemistry of phases in as-cast nickel-aluminum bronze

  • F. Hasan
  • A. Jahanafrooz
  • G. W. Lorimer
  • N. Ridley
Alloy Phases and Structure


The morphology, crystallography, and composition of the phases present in as-cast nickel-aluminum bronze of nominal composition copper-10 wt pct aluminum-5 wt pct nickel-5 wt pct iron have been investigated using optical, electron optical, and microprobe analysis techniques. The as-cast microstructure consists of copper-rich α, martensitic β, and κ-phases based on Fe3Al and NiAl. The κz precipitates have a dendritic morphology and are cored; the composition ranges from iron-rich solid solution to Fe3Al. The κII and κiv precipitates have, respectively, a dendritic and an equiaxed/dendritic morphology, and are based on Fe3Al, while κIII is a eutectoidal decomposition product of lamellar or globular morphology based on NiAl. The κI, κII, and κIII precipitates have the Kurdjumov-Sachs orientation relationship with α matrix. Small κIV precipitates exhibit the Nishiyama-Wasserman orientation relationship with the α matrix, while large κiv precipitates have an orientation relationship which lies between Kurdjumov-Sachs and Nishiyama-Wasserman.


Martensite Metallurgical Transaction Orientation Relationship Electron Diffraction Pattern Thin Specimen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Cook, W. P. Fentiman, and E. Davis:J. Inst. Metals, 1952, vol. 80, pp. 419–29.Google Scholar
  2. 2.
    P. Weill-Couly and D. Arnaud:Fonderie, 1973, vol. 28, no. 322, pp. 123–35.Google Scholar
  3. 3.
    E. A. Culpan and G. Rose:J. Mater. Sci., 1978, vol. 13, pp. 1647–56.CrossRefGoogle Scholar
  4. 4.
    D. M. Lloyd, G. W. Lorimer, and N. Ridley:Met. Technology, 1980, vol. 7, pp. 114–19.Google Scholar
  5. 5.
    G. Cliff and G.W. Lorimer:J. Microscopy, 1975, vol. 103, pp. 203–07.Google Scholar
  6. 6.
    J. C. Rowlands and T. R. H. M. Brown: Proc. of the 4th International Congress on Marine Corrosion and Fouling, Entibes, Juan-les-Pins, June 1976, Centre de Recherches et d'Etudes Océanograthique, Boulogne, France.Google Scholar
  7. 7.
    H. Warlimont and L. Delaey:Prog. Mater. Sci., 1974, vol. 18, pp. 25–32 and 41–46.Google Scholar
  8. 8.
    R. Thomson and J. O. Edwards: Report MRP/PMRL/76-27(J), Part I, CANMET, Ottawa, Ontario, Canada.Google Scholar
  9. 9.
    C. S. Barrett and T. B. Massalski:Structure of Metals, Pergamon Press, 1980, p. 275.Google Scholar
  10. 10.
    A. J. Bradley, W. L. Bragg, and C. Sykes:J. Iron Steel Inst., 1940, vol. 141, pp. 99–109.Google Scholar
  11. 11.
    R. P. Elliott:Constitution of Binary Alloys, First Supplement, McGraw-Hill, 1965, p. 36.Google Scholar
  12. 12.
    M. Hansen:Constitution of Binary Alloys, McGraw Hill, 1958, p. 90.Google Scholar
  13. 13.
    G. Lutjering and H. Warlimont:Acta Met., 1964, vol. 12, pp. 1460–61.CrossRefGoogle Scholar
  14. 14.
    R. Thomson and J. O. Edwards: Report MRP/PMRL/76-28(J), Part II, CANMET, Ottawa, Ontario, Canada.Google Scholar
  15. 15.
    F. Hasan, G. W. Lorimer, and N. Ridley: University of Manchester, unpublished research, 1982.Google Scholar

Copyright information

© American Society for Metals and The Metallurgical Society of AIME 1982

Authors and Affiliations

  • F. Hasan
    • 1
  • A. Jahanafrooz
    • 1
  • G. W. Lorimer
    • 1
  • N. Ridley
    • 1
  1. 1.Department of MetallurgyJoint University of Manchester/UMISTManchesterEngland

Personalised recommendations