Advertisement

Metallurgical Transactions

, Volume 1, Issue 7, pp 1987–1995 | Cite as

The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron

  • Bruce L. Bramfitt
Article

Abstract

A systematic study of carbide and nitride additions on the heterogeneous nucleation behavior of supercooled liquid iron was undertaken. It was found that titanium nitride and titanium carbide were very effective in promoting heterogeneous nucleation. These compounds were followed by silicon carbide, zirconium nitride, zirconium carbide, and tungsten carbide in decreasing order of effectiveness. The degree of potency of the nucleation catalysts is explained on the basis of the disregistry between the lattice parameters of the substrate and the nucleating phase. Through the inclusion of planar terms the Turnbull-Vonnegut “linear” disregistry equation was modified to more accurately describe the crystallographic relationship at the interface during heterogeneous nucleation.

Keywords

Carbide Tungsten Carbide Heterogeneous Nucleation Titanium Carbide Liquid Iron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.M. Hogan and G. L. F. Powell:J. Austral. Inst. Metals, 1966, vol. 11, p. 235.Google Scholar
  2. 2.
    A. Walton:International Science and Technology, Dec. 1966, p. 28.Google Scholar
  3. 3.
    K. A. Jackson,Ind. Eng. Chem., 1965, vol. 57, p. 28.CrossRefGoogle Scholar
  4. 4.
    G. A. Chadwick:Metals and Materials, 1969, vol. 3, no. 3, p. 77.Google Scholar
  5. 5.
    B. E. Sundquist and L.F. Mondolfo:Trans. TMS-AIME, 1961, vol. 221, p. 607.Google Scholar
  6. 6.
    G. M. Pound:Liquid Metals and Solidification, p. 87, ASM, 1958.Google Scholar
  7. 7.
    W. A. Tiller and T. Takahashi:Acta Met., 1969, vol. 17, p. 483.CrossRefGoogle Scholar
  8. 8.
    D. Tumbull and R. Vonnegut:Ind. Eng. Chem., 1952, vol. 44, p. 1292.CrossRefGoogle Scholar
  9. 9.
    P. J. Bradshaw, M. E. Gasper, and S. Pearson:J. Inst. Metals, 1958, vol. 87, p. 15.Google Scholar
  10. 10.
    B.E. Sundquist and L. F. Mondolfo:Trans. TMS-AIME, 1961, vol. 221, p. 157.Google Scholar
  11. 11.
    J. A. Reynolds and C. R. Tottle:J. Inst. Metals, 1951, vol. 80, p. 1328.Google Scholar
  12. 12.
    M. E. Glicksman and W. J. Childs:Acta Met, 1962, vol. 10, p. 925.CrossRefGoogle Scholar
  13. 13.
    G. K. Turnbull, D. M. Patton, G. W. Form, and J. F. Wallace:Trans. Am. Foundrymen’s Soc, 1960, vol. 69, p. 792.Google Scholar
  14. 14.
    N. Church, P. Wieser, and J. F. Wallace:Mod. Castings, 1966, p. 129.Google Scholar
  15. 15.
    J. F. Wallace:Proc. Electric Furnace Conf., 1962, p. 125.Google Scholar
  16. 16.
    G. K. Turnbull, G. W. Form, and J. F. Wallace: 1962, U. S. Patent No. 3,308,515.Google Scholar
  17. 17.
    J. E Wallace:J. Metals, 1963, p. 372.Google Scholar
  18. 18.
    P. B. Crosley, A. W. Douglas, and L. F. Mondolfo:Iron Steel Institute, Publication 110,1967, p. 10.Google Scholar
  19. 19.
    A. Goldsmith, T. E. Waterman, and H. J. Hirschhorn:Handbook of Thermophysical Properties of Solid Materials, 1961, vol. 4.Google Scholar
  20. 20.
    F. Kralik and P. Seb.:Kovove Materialy, 1965, vol. 3, p. 106.Google Scholar
  21. 21.
    A. Hoffmann:Arch. Eisenhuttenw., 1967, vol. 38, p. 785.Google Scholar
  22. 22.
    A. Taylor and B. J. Kagel: Crystallographic Data on Metal and Alloy Structures, Dover, New York, 1963.Google Scholar

Copyright information

© The Metallurgical Society of American Institute of Mining 1970

Authors and Affiliations

  • Bruce L. Bramfitt
    • 1
  1. 1.Alloy Development Section, Homer Research LaboratoriesBethlehem Steel Corp.Bethlehem

Personalised recommendations