Metallurgical Transactions

, Volume 3, Issue 7, pp 1797–1805

Long-range order and ordering kinetics in CoPt3

  • H. Berg
  • J. B. Cohen
Alloy Phases and Structure


The Co-Pt system is well suited for studies of order-disorder by field-ion microscopy. Because of this, and the fact that detailed information on ordering is available for only one Ll2 alloy (Cu3Au), an extensive X-ray study was made of CoPt3. Long-range order falls to lower values (S ≈ 0.64) in this alloy than in Cu3Au. There is a two-phase field nearTc (685°C) extending for about 20°C. The ordered phase has a smaller lattice parameter than the disordered phase close toTc, but at room temperature the reverse is true. Ordering (when the domain size is large) follows Rothstein’s kinetic theory, with an activation energy of 74.0(9) kcal per g-atom. Domain growth is similar to grain growth, with a time exponent of about 0.45 and an average activation energy of about 62 kcal per g-atom. The antiphase domain structure is isotropic, in contrast to Cu3Au. There is little difference in atomic volume of cobalt and platinum in the ordered state as compared to the pure elements.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Hansen:Constitution of Binary Alloys, 2nd ed., p. 493, McGraw-Hill Book Co., New York, 1958.Google Scholar
  2. 2.
    J. B. Newkirk, A. H. Geisler, D. L. Martin, and R. Smoluchowski:AIME Tram., 1950, vol. 188, pp. 1249–60.Google Scholar
  3. 3.
    A. H. Geisler and D. L. Martin:J. Appl. Phys., 1952, vol. 23, p. 375.CrossRefGoogle Scholar
  4. 4.
    F. Menzinger and A. Paoletti:Phys. Rev., 1966, vol. 143, pp. 365–72.CrossRefGoogle Scholar
  5. 5.
    T. T. Tsong and E. W. Müller:J. Appl. Phys., 1967, vol. 38, pp. 3531–36.CrossRefGoogle Scholar
  6. 6.
    H. N. Southworth and B. Ralph:Phil. Mag., 1970, vol. 21, pp. 23–41.CrossRefGoogle Scholar
  7. 7.
    E. Gebhardt and W. Röster:Z. Metallk., 1940, vol. 32, pp. 253–61.Google Scholar
  8. 8.
    J. M. Cowley:Phys. Rev., 1950, vol. 77, pp. 669–75.CrossRefGoogle Scholar
  9. 9.
    L. H. Schwartz and J. B. Cohen:J. Appl. Phys., 1965, vol. 36, pp. 598–616.CrossRefGoogle Scholar
  10. 10.
    A. A. Smirnov, E. A. Tikhonova, and A. V. Chalyi:Sov. Phys. Solid State, 1962, vol. 4, pp. 55–59.Google Scholar
  11. 11.
    C. B. Walker and D. R. Chipman:Acta Cryst., 1970, vol. A26, pp. 447–55.Google Scholar
  12. 12.
    R. E. Macfarlane, J. A. Rayne, and C. K. Jones:Phys. Lett., 1965, vol. 18, pp. 91–92.CrossRefGoogle Scholar
  13. 13.
    R. D. Dragsdorf:J. Appl. Phys., 1960, vol. 31, pp. 434–36.CrossRefGoogle Scholar
  14. 14.
    D.E. Mikkola and J.B.Cohen:Acta Met., 1966, vol. 14, pp. 105–22.CrossRefGoogle Scholar
  15. 15.
    C. Zener:Phys. Rev., 1936, vol. 49, pp. 122–37.CrossRefGoogle Scholar
  16. 16.
    R. W. James:The Optical Principles of the Diffraction of X-rays, pp. 218–20, G. Bell and Sons, Ltd., London, 1954.Google Scholar
  17. 17.
    K. Alexopoulous, J. Boskouitis, S. Mourikis, and M. Roilos:Acta Cryst., 1965, vol. 19, pp. 349–53.CrossRefGoogle Scholar
  18. 18.
    R. Lagnegorg and R. Kaplow:Acta Met., 1967, vol. 15, pp. 13–24.CrossRefGoogle Scholar
  19. 19.
    P. S. Rudman and B. L. Averbach:Acta Met., 1957, vol. 5, pp. 65–73.CrossRefGoogle Scholar
  20. 20.
    A. Paskin:Acta Cryst., 1957, vol. 10, pp. 667–69.CrossRefGoogle Scholar
  21. 21.
    J. C. Slater:Phys. Rev., 1940, vol. 57, pp. 744–46.CrossRefGoogle Scholar
  22. 22.
    W. L. Bragg and E. J. Williams:Proc. Roy. Soc, 1934, vol. A145, pp. 699–730; 1935, vol. Al51, pp. 540-66.CrossRefGoogle Scholar
  23. 23.
    J. B. Cohen, R. Dixon, M. Hayakawa, and L. Morrison:Rev. Sci. Inst, 1969, vol.40, p. 1235.CrossRefGoogle Scholar
  24. 24.
    G. J. Dienes:Acta Met., 1955, vol. 3, pp. 549–57.CrossRefGoogle Scholar
  25. 25.
    A. J. Nowick and L. R. Weisberg:Acta Met, 1958, vol. 6, pp. 260–65.CrossRefGoogle Scholar
  26. 26.
    J. Rothstein:Phys. Rev., 1954, vol. 94, p. 1429.Google Scholar
  27. 27.
    M. Schoijet and L. A. Girifalco:J. Phys. Chem. Solids, 1968, vol. 29, pp. 911–22.CrossRefGoogle Scholar
  28. 28.
    F. W. Jones and C. Sykes:Proc. Roy. Soc, 1938, vol. A166, pp. 376–90.Google Scholar
  29. 29.
    G. E. Poquette and D. E. Mikkola:Trans. TMS-AIME, 1969, vol. 245, pp. 743–51.Google Scholar
  30. 30.
    A. J. C. Wilson:Proc. Roy. Soc, 1943, vol. A181, pp. 360–68.Google Scholar
  31. 31.
    D. E. Mikkola and J. B. Cohen:Local Atomic Arrangements Studied by X-ray Diffraction, pp. 289–337, Gordon and Breach, New York, 1966.Google Scholar
  32. 32.
    C. J. Smithells:Metals Reference Handbook, p. 644, Plenum Press, New York, 1967.Google Scholar
  33. 33.
    P. S. Rudman:Intermetallic Compounds, p. 405, J. H. Westbrook, ed., J. Wiley and Sons, New York, 1966.Google Scholar

Copyright information

© The Metallurgical of Society of AIME 1972

Authors and Affiliations

  • H. Berg
    • 1
  • J. B. Cohen
    • 2
  1. 1.Motorola, Inc.Phoenix
  2. 2.Department of Materials ScienceThe Technological Institute, Northwestern UniversityEvanston

Personalised recommendations