Advertisement

Metallurgical Transactions

, Volume 3, Issue 5, pp 1077–1094 | Cite as

A debate on the bainite reaction

  • R. F. Hehemann
  • K. R. Kinsman
  • H. I. Aaronson
Article

Abstract

The authors debate three topics central to the controversies which have enveloped the bainite reaction ever since it was first recognized as a distinctive mode of austenite decomposition. These include: “what is bainite?”, “the growth mechanism of the ferritic component of bainite”, and “the sources of bainitic carbide precipitation.” RFH concludes that bainite is the product of a shear transformation. Individual bainite plates are suggested to grow substantially more rapidly than volume diffusion-control allows, but a constraint such as the build-up of volume strain energy limits the extent of their growth. This mechanism of growth ensures extensive supersaturation of bainitic ferrite with respect to carbon. Whether or not carbides precipitate in association with bainite plates and whether the carbide is cementite orε, however, is a complex question in competitive reaction kinetics. New experimental evidence is presented to demonstrate thatε carbide precipitated in lower bainite dissolves upon heating above the kinetic-B stemperature in an alloy steel containing 1.5 pct Si. This result is taken to support the existence of the metastable eutectoid reactionγ ⇌ α + ε atca 350°C. HIA and KRK define bainite as the product of a nonlamellar eutectoid reaction. On this view, carbide precipitation thus plays an essential, rather than an ancillary role. Development of the Widmanstatten morphology by the ferritic component of bainite is shown to be inessential to the classification of a eutectoid structure as bainite. When this morphology is present, however, it is concluded to grow by the ledge mechanism, without the participation of shear, at rates of the order of or less than those allowed by volume diffusion-control. New experimental evidence is presented to show that the lengthening and thickening kinetics of individual plates within sheaves of upper bainite are consistent with this description. The results of a new calculation indicate that the initial carbon content of bainite plates lies between theα/α + Fe3C) and the extrapolatedα/(α+ γ) phase boundaries, in agreement with expectation from the ledge mechanism of growth.

Keywords

Ferrite Austenite Martensite Cementite Bainite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. S. Davenport and E. C. Bain:Trans. AIME, 1930, vol. 90, p. 117.Google Scholar
  2. 2.
    H. I. Aaronson:Inst. Metals, Monogr. 33, 1969, p. 270.Google Scholar
  3. 3.
    R. F. Mehl:Hardenability of Alloy Steels, ASM, 1939, p. 1.Google Scholar
  4. 4.
    A. Hultgren:Trans. ASM, 1947, vol. 39, p. 915.Google Scholar
  5. 5.
    D. N. Shackleton and P. M. Kelly:Iron Steel Inst., London, Spec. Rep. 93, 1965, p. 126.Google Scholar
  6. 6.
    K. Shimizu and Z. Nishiyama:Mem. Inst, Sci. Ind. Res., Osaka Unit., 1963, vol. 20, p. 43.Google Scholar
  7. 7.
    T. Ko and S. A. Cottrell:J Iron Steel Inst., 1952, vol. 172, p. 307.Google Scholar
  8. 8.
    K. Tsuya:J. Mech. Lab., Japan, 1956, vol. 2, p. 20.Google Scholar
  9. 9.
    G. R Speich and M. Cohen:Trans. TMS-AIME, 1960, vol. 218, p. 1050.Google Scholar
  10. 10.
    R. H. Goodenow, S. J. Matas, and R. F. Hehemann:Trans. TMS-AIME, 1963, vol. 227, p. 651.Google Scholar
  11. 11.
    G. R. Srinivasan and C. M. Wayman:ActaMet, 1968, vol. 16, p. 621.Google Scholar
  12. 12.
    J. W. Christian:The Theory of Transformations in Metals and Alloys, Pergamon Press, New York, 1965.Google Scholar
  13. 13.
    L. Kaufman, S. V. Radcliffe, and M. Cohen:Decomposition of Austenite by Diffusional Processes, p. 313, Interscience, New York, 1962.Google Scholar
  14. 14.
    A. P. Miodownik,J. Inst. Metals, 1954–55, vol. 83, p. 561.Google Scholar
  15. 15.
    T. Lyman and A. R. Tioiano:Trans. AIME, 1945, vol. 162, p. 196.Google Scholar
  16. 16.
    M. Cohenet al.:Perspectives in Materials Research, NAS-NRC for ONR, U. S. Government Printing Office, 1963, p. 309.Google Scholar
  17. 17.
    J.M. Robertson:J. Iron Steel Inst, 1929,vol. 119, p, 391.Google Scholar
  18. 18.
    A. Hultgren:Jernkontorets Ann., 1951, vol. 135, p. 403;Kgl. Svenska Vetenskapsakad. Handl, 1953, vol. 4, Ser. 4.Google Scholar
  19. 19.
    F. Wever and E. Lange:Mitt. Kaiser Wilhelm Inst. Eisenforsch., 1932, vol. 14, p. 71.Google Scholar
  20. 20.
    K. R. Kinsman and H. I. Aaronson:Transformation and Hardenability in Steels, p. 39, Climax Molybdenum Company, Ann Arbor, 1967.Google Scholar
  21. 21.
    P. Boswell: Massachusetts Institute of Technology, Cambridge, Mass., K. R. Kinsman and H. I. Aaronson, Ford Motor Co., Dearborn, Mich., unpublished research, 1970.Google Scholar
  22. 22.
    T. Ko:J. Iron Steel Inst, 1953, vol. 175, p. 16.Google Scholar
  23. 23.
    C. A. Dubé, H. I. Aaronson, and R. F. Mehl:Rev. Met, (Paris), 1958, vol. 55, p. 201.Google Scholar
  24. 24.
    H. I. Aaronson and K. R. Kinsman: Ford Motor Co., Dearborn, Mich., and P. Boswell: Massachusetts Institute of Technology, Cambridge, Mass., unpublished research, 1970.Google Scholar
  25. 25.
    T. Lyman and A. R. Troiano:Trans. ASM, 1946, vol. 37, p. 402.Google Scholar
  26. 26.
    J. S. Bowles and J. K. Mackenzie:ActaMet, 1954, vol. 2, pp. 129, 138, 224.Google Scholar
  27. 27.
    M. S. Wechsler, D. S. Lieberman, and T. A. Read:Trans. AIME, 1953, vol. 194, p. 1503.Google Scholar
  28. 28.
    J. W. Christian:Decomposition ofAustenite by Diffusional Processes, p. 371, Interscience Publishers, New York, 1962.Google Scholar
  29. 29.
    H. M. Clark and C. M. Wayman:Phase Transformations, p. 59, ASM, Metals Park, Ohio, 1970.Google Scholar
  30. 30.
    J. M. Oblak, R. H. Goodenow, and R. F. Hehemann:Trans. TMS-AIME, 1964, vol. 230, p. 258.Google Scholar
  31. 31.
    E. Eichen, H. I. Aaronson, G. M. Pound, and R. Trivedi:ActaMet, 1966, vol. 14, p. 1637.Google Scholar
  32. 32.
    K. R. Kinsman, E. Eichen, and H. I. Aaronson: Ford Motor Co., Dearborn, Mich., unpublished research, 1971.Google Scholar
  33. 33.
    G. R. Speich,Decomposition of Austenite by Diffusional Processes, p. 353, Interscience Publishers, New York, 1962.Google Scholar
  34. 34.
    R. D. Garwood:Iron Steel Inst., London, Spec. Rep. No. 93, 1965, p. 90.Google Scholar
  35. 35.
    P. E. Repas and R. F. Hehemann: Tech. Rep. No. 6 to ONR, ContractNonr 1141(15), June, 1967.Google Scholar
  36. 36.
    G. R. Purdy:Met. Sci. J., 1971, vol. 5, p. 81.CrossRefGoogle Scholar
  37. 37.
    P. E. J. Flewitt and J. M. T owner,J Inst. Metals, 1967, vol. 95, p. 273.Google Scholar
  38. 38.
    H. I. Aaronson, C. Laird, and K. R. Kinsman:Phase Transformations, p. 313, ASM, Metals Park, Ohio, 1970.Google Scholar
  39. 39.
    M. Hillert:Jernkontorets Ann., 1957, vol. 141, p. 757.Google Scholar
  40. 40.
    M. Hillert:Decomposition of Austenite by Diffusional Processes, p. 197, Interscience Publishers, New York, 1962.Google Scholar
  41. 41.
    B. N. Bose and M. F. Hawkes:Trans. AIME, 1950, vol. 188, p. 307.Google Scholar
  42. 42.
    H. I. Aaronson, W. B. Triplett, and G. M. Andes:Trans. TMS-AIME, 1960, vol. 209, p. 331.Google Scholar
  43. 43.
    C. W. Spencer and D. J. Mack:Decomposition of Austenite by Diffusional Processes, p. 549, Interscience Publishers, New York, 1962.Google Scholar
  44. 44.
    R. H. Goodenow and R. F. Hehemann:Trans. TMS-AIME, 1965, vol. 233, p. 1777.Google Scholar
  45. 45.
    M. M. Rao and P. G. Winchell:Trans. TMS-AIME, 1967, vol. 239, p. 956.Google Scholar
  46. 46.
    E. A. Wilson,ScriptaMet, 1970, vol. 4, p. 309CrossRefGoogle Scholar
  47. 47.
    E. L. F. Weisner and E. Hornbogen:ScriptaMet, 1969, vol. 3, p. 243.CrossRefGoogle Scholar
  48. 48.
    S. Bhattacharyya and G. L. Kehl:Trans. ASM, 1955, vol. 47, p. 351.Google Scholar
  49. 49.
    J. M. Oblak and R. F. Hehemann:Transformation and Hardenability in Steel, p. 15, Climax Molybdenum Company, Ann Arbor, 1967.Google Scholar
  50. 50.
    R. H. Goodenow and R. F. Hehemann: Discussion inDecomposition of Austenite by DiffusionalProcesses, p. 367, Interscience Publishers, New York, 1962.Google Scholar
  51. 51.
    R. H. Goodenow, R. H. Barkalow, and R. F. Hehemann:Physical Properties of Martensite and Bainite, p. 135, Spec. Rep. No. 93, The Iron and Steel Institute (London), 1965.Google Scholar
  52. 52.
    R. H. Goodenow: M. S. Thesis, Case Institute of Technology, 1962.Google Scholar
  53. 53.
    R. F. Hehemann:Phase Transformations, p. 397, ASM, Metals Park, Ohio, 1970.Google Scholar
  54. 54.
    M. Lange and K. Mathieu:Mitt. Kaiser Wilhelm Inst. Eisenforsch., 1938, vol. 20, p. 125.Google Scholar
  55. 55.
    J. P. Sheehan, C. A. Julien, and A. R. Troiano:Trans. ASM, 1949, vol. 41, p. 1165.Google Scholar
  56. 56.
    A. B. Greninger and A. R. Troiano:Trans.AIME, 1940, vol. 140, p. 311.Google Scholar
  57. 57.
    J. R. Vilella:Trans. AIME, 1940, vol. 140, p. 332.Google Scholar
  58. 58.
    W. Jellinghaus:Arch. Eisenhüttenw., 1957, vol. 28, p. 469.Google Scholar
  59. 59.
    T. G. Nilan:Trans. TMS-AIME, 1967, vol. 239, p. 898.Google Scholar
  60. 60.
    T. G. Nilan:Transformation and Hardenability in Steels, p. 57, Climax Molybdenum Company, Ann Arbor, 1967.Google Scholar
  61. 61.
    H. I. Aaronson:Decomposition of Austenite by Diffusional Processes, p. 387, Interscience Publishers, New York, 1962.Google Scholar
  62. 62.
    H. I. Aaronson: Ph.D. Thesis, Carnegie Institute of Technology, 1954.Google Scholar
  63. 63.
    J. M. Chilton and G. R. Speich:Met. Trans., 1970, vol. 1, p. 1019.Google Scholar
  64. 64.
    L. J. Habraken:C. R., Rech. Trav. Cen. Nat. Rech. Met., No. 19, 1957.Google Scholar
  65. 65.
    L. J. Habraken and M. Economopoulos:Transformation and Hardenability in Steels, p. 69, Climax Molybdenum Company, Ann Arbor, 1967.Google Scholar
  66. 66.
    H. I. Aaronson and C. Wells:Tram. AIME, 1955, vol. 203, p. 1002.Google Scholar
  67. 67.
    A. T. Davenport, F. G. Berry, and R. W. K. Honeycombe:Met. Sci. J., 1968, vol. 2, p. 104.CrossRefGoogle Scholar
  68. 68.
    R. Le Houllier, G. Begin and A. Dubé:Met. Trans., 1971, vol. 2, p. 2645.Google Scholar
  69. 69.
    S. J. Matas and R. F. Hehemann:Trans. TMS-AIME, 1961, vol. 221, p. 176.Google Scholar
  70. 70.
    F.|G. Berry, A. T. Davenport, and R. W. K. Honeycombe:Inst. Metals, Monog. No. 33, 1969, p. 288.Google Scholar
  71. 71.
    H. B. Aaron and H. I. Aaronson:Met. Trans., 1971, vol. 2, p. 23.Google Scholar
  72. 72.
    F. B. Pickering:Transformations and Hardenability in Steels, p. 109, Climax Molybdenum Company, Ann Arbor, 1967.Google Scholar
  73. 73.
    H. I. Aaronson and C. Wells:Trans. AIME, 1956, vol. 206, p. 1216.Google Scholar
  74. 74.
    R. Trivedi:Met. Trans., 1970, vol. 1, p. 921.Google Scholar
  75. 75.
    G. R. Purdy, McMaster Univ., Hamilton, Ontario, private communication, 1971.Google Scholar
  76. 76.
    F. J. Schoen and W. S. Owen:Met. Trans., 1971, vol. 2, p. 2431.CrossRefGoogle Scholar
  77. 77.
    M. Hillert: unpublished research quoted in ref. 13.Google Scholar
  78. 78.
    R. D. Townsend and J. S. Kirkaldy:Trans. ASM, 1968, vol. 61, p. 605.Google Scholar
  79. 79.
    E. P. Simonen and R. Trivedi: Iowa State University, Ames, Iowa, and H. I. Aaronson: Ford Motor Co., Dearborn, Mich., unpublished research, 1970.Google Scholar
  80. 80.
    K. R. Kinsman and H. I. Aaronson:Met. Trans., 1970, vol. 1, p. 1485.Google Scholar
  81. 81.
    G. J. Jones and R. Trivedi:J. Appl. Phys., in press.Google Scholar
  82. 82.
    W. L. Grube and S. R. Rouze:High Temperature-High Resolution Metallography, p. 313, Gordon and Breach, New York, 1967.Google Scholar
  83. 83.
    S. R. Rouze and W. L. Grube: General Motors Corp., Warren, Mich., private communication, 1971.Google Scholar
  84. 84.
    H. I. Aaronson, H. A. Domian, and G. M. Pound:Trans. TMS-AIME, 1966, vol. 236, p. 768.Google Scholar
  85. 85.
    J. W. Cahn, W. B. Hillig, and G. W. Sears:ActaMet, 1964, vol. 12, p. 1421.Google Scholar
  86. 86.
    J. S. Bowles and N. F. Kennon:J. Aust. Inst. Metals, 1960, vol. 5, p. 106.Google Scholar
  87. 87.
    N. F. Kennon and R. H. Edwards:J. Aust. Inst. Metals, 1970, vol. 15, p. 195.Google Scholar
  88. 88.
    S. K. Das and G. Thomas:Trans. ASM, 1969, vol. 62, p. 659.Google Scholar
  89. 89.
    A. R. Marder and G. Krauss:Trans. ASM, 1969, vol. 62, p. 957.Google Scholar
  90. 90.
    K. H. Eckelmeyer and G. Krauss: Lehigh Univ., Bethlehem, Pa., unpublished research, 1967.Google Scholar
  91. 91.
    Y. C. Liu and H. I. Aaronson:ActaMet., 1970, vol. 18, p. 845.Google Scholar
  92. 92.
    C. Laird and H. I. Aaronson:ActaMet., 1969, vol. 17, p. 505.Google Scholar
  93. 93.
    M. F. Smith, G. R. Speich, and M. Cohen:Trans. TMS-AIME, 1959, vol. 215, p. 528.Google Scholar
  94. 94.
    R. T. Howard and M. Cohen:Trans. AIME, 1948, vol. 176, p. 384.Google Scholar
  95. 95.
    R. F. Bunshah and R. F. Mehl:Trans. AIME, 1953, vol. 197, p. 1251.Google Scholar
  96. 96.
    L. Kaufman and M. Cohen:Progr. Metal Phys., 1958, vol. 7, p. 165.CrossRefGoogle Scholar
  97. 97.
    J. W. Christian:Proc. Roy. Soc, 1951, vol. A206,p. 51.Google Scholar
  98. 98.
    A. Schrader and F. Wever:Arch. Eisenhüttenw., 1952, vol. 23, p. 489.Google Scholar
  99. 99.
    R. I. Entin:Decomposition of Austenite by Diffusional Processes, p. 295, Interscience Publishers, New York, 1962.Google Scholar
  100. 100.
    F. Wever and K. Mathieu:Mitt. Kaiser Wilhelm Inst. Eisenforsch., 1940, vol. 22, p. 9.Google Scholar
  101. 101.
    E. P. Klier and T. Lyman:Trans. AIME, 1944, vol. 158. p. 394.Google Scholar
  102. 102.
    A.S.T.M. Committee E-4:Trans. ASTM, 1950, vol. 50, p. 444, 1952, vol. 52, p. 543;Trans. ASTM, 1954, vol. 54, p. 568.Google Scholar
  103. 103.
    J. Deliry:Mem. Sci. Rev. Met, 1965, vol. 62, p. 527.Google Scholar
  104. 104.
    W. Richardson: M. S. Thesis, Case-Western Reserve University, 1971.Google Scholar
  105. 105.
    H. Modin and S. Modin:Jernkontorets Ann., 1955, vol. 139, p. 481.Google Scholar
  106. 106.
    S. M. Kaufman, G. M. Pound, and H. I. Aaronson:Trans. AIME, 1957, vol. 209, p. 855.Google Scholar
  107. 107.
    E. S. Davenport:Trans. ASM, 1939, vol. 27, p. 837.Google Scholar
  108. 108.
    J. R. Cruciger and J. R. Vilella:Trans. ASM, 1944, vol. 32, p. 195.Google Scholar
  109. 109.
    A. Hultgren:Trans. ASM, 1947, vol. 39, p. 915.Google Scholar
  110. 110.
    D. N. Shackleton and P. M.Kelly:ActaMet., 1967, vol. 15,p. 979.Google Scholar
  111. 111.
    N. P. Allen, L. B. Pfeil, and W. T. Griffiths:Iron Steel Inst, 1939, Spec. Rep. 24, p. 369.Google Scholar
  112. 112.
    P. Vasudevan, L. W. Graham, and H. J. Axon:J. Iron Steel Inst, 1958, vol. 190, p. 386.Google Scholar
  113. 113.
    L. P. Ivanova and A. G. Seleznev:Trudy Khar’kov. Politekh. Inst. V. I, Lenina, 1959, vol. 21, p. 23.Google Scholar
  114. 114.
    S. V. Radcliffe and E. C. Rollason:J Iron Steel Inst, 1959, vol. 191, p. 56.Google Scholar
  115. 115.
    A. Rose:Haerterei-Tech. Mitt, 1950, vol. 5, p. 44.Google Scholar
  116. 116.
    A. Rose and W. Peter:Stahl Eisen, 1952, vol. 72, p. 1063.Google Scholar
  117. 117.
    F. E. Werner, B. L. Averbach, and M. Cohen:Trans. AIME, 1956, vol. 206, p. 1484.Google Scholar
  118. 118.
    G. V. Kurdjumov and M. D. Perkas:Prob, in Phys. of Metallography and Phys. Met., 1951, vol. 2, p. 167.Google Scholar
  119. 119.
    K. R. Kinsman, E. Eichen, and H. I. Aaronson:Met. Trans., 1971, vol. 2, p. 346.Google Scholar
  120. 120.
    M. G. Hall, K. R. Kinsman, and H. I. Aaronson:J. Iron Steel Inst, in press.Google Scholar
  121. 121.
    H. I. Aaronson and K. R. Kinsman: Ford Motor Co., Dearborn, Mich., unpublished research, 1971.Google Scholar
  122. 122.
    H. Jolivet and A. Portevin:Compt. Rend., 1939, vol. 209, p. 556.Google Scholar
  123. 123.
    E. P. Klier and A. R. Troiano:Trans. AIME, 1945, vol. 162, p. 175.Google Scholar
  124. 124.
    F. Wever, A. Rose, and W. Peter:Arch. Eisenhüttenw., 1950, vol. 21, p. 367.Google Scholar
  125. 125.
    C. A. Dubé: Ph.D. Thesis, Carnegie Institute of Technology, 1948.Google Scholar
  126. 126.
    C. Zener:J. Appl. Phys., 1949, vol. 20, p. 950.CrossRefGoogle Scholar
  127. 127.
    C. S. Roberts:Trans. AIME, 1953, vol. 197, p. 203.Google Scholar
  128. 128.
    H. I. Aaronson and H. A. Domian:Trans. TMS-AIME, 1966, vol. 236, p. 781.Google Scholar
  129. 129.
    L. M. Pevzner, T. D. Kubyushina, G. M. Rovenskii and A. I. Samoilov:Soviet Metallography and Treatment of Metals, 1956, no. 11, p. 2.Google Scholar
  130. 130.
    M. G. Hall, H. I. Aaronson, and K. R. Kinsman:Surface Sci, in press.Google Scholar
  131. 131.
    K. R. Kinsman and H. I. Aaronson: Discussion to Oblak and Heheman,Transformation and Hardenability in Steels, p. 33, Climax Molybdenum Co., Ann Arbor, 1967.Google Scholar
  132. 132.
    J. C. Fisher:Thermodynamics in Physical Metallurgy, p. 201, ASM, Metals Park, Ohio, 1950.Google Scholar
  133. 133.
    J. A. Klosterman: Inst. Metals, Monogr. 33, 1969, p. 143.Google Scholar

Copyright information

© The Metallurgical of Society of AIME 1972

Authors and Affiliations

  • R. F. Hehemann
    • 1
  • K. R. Kinsman
    • 2
  • H. I. Aaronson
    • 3
  1. 1.Division of ClevelandOhio
  2. 2.Metallurgy Department, Scientific Research StaffFord Motor CompanyDearborn
  3. 3.Department of Metallurgical EngineeringMichigan Technological UniversityHoughton

Personalised recommendations