Advertisement

Metallurgical Transactions

, Volume 1, Issue 6, pp 1701–1710 | Cite as

The role of oxide microstructure and growth stresses in the high-temperature scaling of nickel

  • F. N. Rhines
  • J. S. Wolf
Article

Abstract

The oxidation of nickel near 1000°C is accompanied by the generation of stresses parallel with the metal-oxide interface and of magnitude (~1500 psi) sufficient to elongate nickel rod, increase sheet area, and sharpen the angle of bend of ells and helices. A primary cause of this stress is identified with the formation of layers of new nickel oxide upon boundaries of columnar grains where nickel, diffusing through the oxide crystals, meets oxygen, diffusing along grain boundaries. Classical parabolic growth of the scale gives way to a slower quasilinear rate when the major site of new oxide formation is abruptly shifted to a system of grain boundaries lying close to the metal surface and created by recrystallization of the oxide under the influence of stress and high temperature. Another source of stress in the scale arises from the constantly changing area of the metal-oxide interface when oxidation is occurring upon curved metal surfaces. This stress reinforces that generated by deposition of material at oxide grain boundaries when the surface is convex and opposes it when the surface is concave.

Keywords

Metallurgical Transaction Nickel Oxide Metallurgical Transaction Volume Oxygen Flux Oxide Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Wagner:Z. physik. Chem., 1933, vol. 21B, pp. 25–41.Google Scholar
  2. 2.
    N. B. Pilling and R. E. Bedworth:J. Inst. Metals, 1923, vol. 29, pp. 529–82.Google Scholar
  3. 3.
    P. D. Dankov and P. V. Churaev:Doklady Akad. Nauk. SSSR, 1950, vol. 73, pp. 1221–24.Google Scholar
  4. 4.
    U. R. Evans:Symp. on Internal Stresses in Metals and Alloys, pp. 291–310, London, 1947.Google Scholar
  5. 5.
    W. J. Moore:J. Chem. Phys., 1953, vol. 21, p. 1117.CrossRefGoogle Scholar
  6. 6.
    H. Engell and F. Wever:Acta Met., 1957, vol. 5, pp. 695–702.CrossRefGoogle Scholar
  7. 7.
    W. Jaenicke and S. Leistikow:Z. physik. Chem., N. F., 1958, vol. 15, pp. 175–95.Google Scholar
  8. 8.
    W. Jaenicke, S. Leistikow, and A. Stadler:J. Electrochem. Soc., 1964, vol. 111, pp. 1031–37.CrossRefGoogle Scholar
  9. 9.
    W. Jaenicke, S. Leistikow, A. Stadler, and L. Albert:Mem. Sci. Rev. Met., 1965, vol. 62, pp. 231–39.Google Scholar
  10. 10.
    J. A. Sartell, R. J. Stokes, S. H. Bendel, T. L. Johnston, and C. H. Li:Trans. TMS-AIME, 1959, vol. 215, pp. 420–24.Google Scholar
  11. 11.
    C. A. Lombard: Air Force Mails. Lab TR-65-53,1965, 55pp.Google Scholar
  12. 12.
    R. F. Tylecote:J. Iron Steel Inst., 1960, vol. 196, pp. 135–41.Google Scholar
  13. 13.
    C. A. Phalnikar and W. M. Baldwin, Jr.:Trans. ASTM, 1951, vol. 51, pp. 1038–59.Google Scholar
  14. 14.
    J. P. Pemsler:J. Electrochem. Soc, 1958, vol. 105, pp. 315–22.CrossRefGoogle Scholar
  15. 15.
    J. V. Cathcart, J. J. Campbell, and G. P. Smtih:J. Electrochem. Soc., 1958, vol. 105, pp. 442–46.CrossRefGoogle Scholar
  16. 16.
    R. E. Pawel, J. V. Cathcart, and J. J. Campbell:AIME Symposium on Columbium Metallurgy, pp. 667–82, Interscience, New York 1961.Google Scholar
  17. 17.
    R. E. Pawel, J. V. Cathcart, and J. J. Campbell:J. Electrochem. Soc., 1963, vol. 110, pp. 551–57.CrossRefGoogle Scholar
  18. 18.
    P. Kofstad:High-Temperature Oxidation of Metals, pp. 147–227, John Wiley & Sons, New York, 1966.Google Scholar
  19. 19.
    A. Dravnieks and H. J. McDonald:Trans. Electrochem. Soc., 1948, vol. 94, pp. 139–51.Google Scholar
  20. 20.
    A. Preece and G. Lucas:J. Inst. Metals, 1952–53, vol. 81, pp. 219–27.Google Scholar
  21. 21.
    B. Ilschner and H. Pfeiffer:Naturwissenschaften, 1953, vol. 40, pp. 603–04.CrossRefGoogle Scholar
  22. 22.
    N. Birks and H. Rickert:J. Inst. Metals, 1962–63, vol. 91, pp. 308–11.Google Scholar
  23. 23.
    B. M. Vasyutinskiy and G. N. Kartmazov:Phys. Met. Metallog., 1963, vol. 15, pp. 120–22.Google Scholar
  24. 24.
    P. W. Bridgman:Studies in Large Plastic Flow and Failure, 1st ed., pp. 142–49, McGraw-Hill Book Co., New York, 1952.Google Scholar
  25. 25.
    F. N. Rhines:AIME Trans., 1940, vol. 137, pp. 246–86.Google Scholar
  26. 26.
    L. S. Darken:AIME Trans., 1942, vol. 150, pp. 157–71.Google Scholar
  27. 27.
    D. A. Vermilyea:Acta Met., 1957, vol. 5, pp. 492–95.CrossRefGoogle Scholar
  28. 28.
    C. Wagner and K. Grünewald:Z. physik. Chem., 1938, vol. 40B, pp. 455–75.Google Scholar
  29. 29.
    W. J. Moore and J. K. Lee:Trans. Faraday Soc, 1952, vol. 48, pp. 916–20.CrossRefGoogle Scholar
  30. 30.
    E. A. Gulbransen:Ann. N. Y. Acad. Sci., 1954, vol. 58, pp. 830–42.CrossRefGoogle Scholar
  31. 31.
    R. Lindner and A. Akerstrom:Disc. Faraday Soc, 1957, no. 23, pp. 133–36.Google Scholar
  32. 32.
    J. P. Baur, R. W. Bartlett, J. N. Ong, Jr., and W. M. Fassell, Jr.:J. Electrochem. Soc., 1963, vol. 110, pp. 185–89.CrossRefGoogle Scholar
  33. 33.
    F. J. Morin:Phys. Rev., 1954, vol. 93, pp. 1199–1204.CrossRefGoogle Scholar
  34. 34.
    D. W. Juenker, R. A. Meussner, and C. E. Birchenall:Corrosion, 1958, vol. 14, pp. 39t-46t.Google Scholar
  35. 35.
    D. H. Bangham:J. Sci. Inst., 1945, vol. 23, pp. 230–31.CrossRefGoogle Scholar
  36. 36.
    U. R. Evans:Pitts. Intern. Conf. Surface Reactions, 1948, pp. 71-76.Google Scholar
  37. 37.
    U. M. Martius:Can. J. Phys., 1955, vol. 33, pp. 466–72.Google Scholar
  38. 38.
    O. Kubaschewski and B. E. Hopkins:Oxidation of Metals and Alloys, 2nd ed., p. 54, Academic Press, New York, 1962.Google Scholar
  39. 39.
    A. U. MacRae:Science, 1963, vol. 139, pp. 379–88.CrossRefGoogle Scholar
  40. 40.
    A. U. Seybolt:Advan. Phys., 1963, vol. 12, pp. 1–43.CrossRefGoogle Scholar
  41. 41.
    S. P. Mitoff:J. Chem. Phys., 1961, vol. 35, pp. 882–89.CrossRefGoogle Scholar
  42. 42.
    G. E Becker and A. L. Day:Proc. Wash. Acad. Sci., 1905, vol. 7, pp. 283–88.Google Scholar
  43. 43.
    C. H. Desch:J. Inst. Metals, 1914, vol. 11, pp. 57–106.Google Scholar
  44. 44.
    S. Taber:Proc Nat. Acad. Sci., 1917, vol. 3, pp. 297–302.CrossRefGoogle Scholar
  45. 45.
    H. C. Boydell:Econ. Geology, 1926, vol. 21, pp. 1–55.CrossRefGoogle Scholar
  46. 46.
    J. A. Sartell, S. Bendel, T. L. Johnston, and C. H. Li:Trans. ASM, 1958, vol. 50, pp. 1047–62.Google Scholar
  47. 47.
    J. L. Meijering and M. L. Verheijke:Acta Met., 1959, vol. 7, pp. 331–38.CrossRefGoogle Scholar
  48. 48.
    Y. Iida:J. Amer. Ceram. Soc., 1958, vol. 41, pp. 397–406.CrossRefGoogle Scholar
  49. 49.
    J. A. Sartell and C. H. Li:J. Inst. Metals, 1961–62, vol. 90, pp. 92–96.Google Scholar
  50. 50.
    D. McLean:Grain Boundaries in Metals, pp. 258–95, Oxford University Press, London, 1957.Google Scholar
  51. 51.
    A. van Hook:Crystallization: Theory and Practice, pp. 1–44, Reinhold Publ. Co., New York, 1961.Google Scholar
  52. 52.
    O. Kubaschewski and O. von Goldbeck:Z. Metallk., 1948, vol. 39, pp. 158–60.Google Scholar
  53. 53.
    R. F. Tylecote:Mem. Sci. Rev. Met., 1965, vol. 62, pp. 241–47.Google Scholar
  54. 54.
    O. Kubaschewski and B. E. Hopkins:Oxidation of Metals and Alloys, 2nd ed., p. 37, Academic Press, Inc., New York, 1962.Google Scholar
  55. 55.
    J. S. Wolf: NASA TN D-5266, June, 1969, 69 pp.Google Scholar

Copyright information

© The Metallurgical Society of American Institute of Mining 1970

Authors and Affiliations

  • F. N. Rhines
    • 1
  • J. S. Wolf
    • 2
  1. 1.Department of Metallurgical and Materials EngineeringUniversity of FloridaGainesville
  2. 2.Division of Interdisciplinary StudiesClemson UniversityClemson

Personalised recommendations