Advertisement

A short-time diffusion correlation for hydrogen-induced crack growth kinetics

  • W. W. Gerberich
  • Y. T. Chen
  • C. ST. John
Transport Phenomena

Abstract

Analysis of hydrogen-stress field interactions have led to kinetic criteria for slow crack growth. Using both elastic and plastic stress fields under opening-mode loading, criteria for stage I, II, III growth are developed in terms of the pressure tensor gradient at the crack tip. It is proposed that stage I (stress-intensity dependent) growth kinetics are predominantly controlled by the elastic stress field while stage II (nearly stress-intensity independent) kinetics are controlled by the plastic stress field. Measurements of slow crack growth in cathodically-charged AISI 4340 steel verify the overall aspects of the correlation. Detailed measurement and analysis of the increase in crack-tip radius with increasing applied stress intensity have led to a proposed decrease in crack growth rate during stage II growth. Some experimental evidence corroborates this later hypothesis and is consistent with long range diffusional flow of hydrogen as the controlling mechanism for crack growth kinetics.

Keywords

Metallurgical Transaction Stress Intensity Plastic Zone Crack Growth Rate Slow Crack Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. R. Troiano:Trans. ASM, 1960, vol. 52, p. 54.Google Scholar
  2. 2.
    R. A. Oriani:Fundamental Aspects of Stress Corrosion Cracking, p. 32, Nat. Assoc. of Corros. Engrs., Houston, 1969.Google Scholar
  3. 3.
    C. St. John and W. W. Gerberich:Met. Trans., 1973, vol. 4, p. 589CrossRefGoogle Scholar
  4. 4.
    W. W. Gerberich and Y. T. Chen:Met. Trans., 1975, vol. 6A, p. 271.Google Scholar
  5. 5.
    B. C. Syrett:Corrosion, 1973, vol. 29, no. 1, p. 23.Google Scholar
  6. 6.
    H. P. Van Leeuwen:ibid., no. 5, p. 197.Google Scholar
  7. 7.
    H. W. Liu:J. Basic Eng., ASME, 1970, vol. 92, p. 633.Google Scholar
  8. 8.
    R. P. Harrison, P. T. Heald, and J. A. Williams:Scripta Met., 1971,vol. 5,p. 543.CrossRefGoogle Scholar
  9. 9.
    W. W. Gerberich:Hydrogen in Metals, p. 115, ASM, Metals Park, 1974.Google Scholar
  10. 10.
    A. J. Stavros and H. W. Paxton:Met. Trans., 1970, vol. 1, p. 3049.Google Scholar
  11. 11.
    W. G. Reuter and C. E. Hartbower:Eng. Fract. Mech, 1971, vol. 3, p. 493.CrossRefGoogle Scholar
  12. 12.
    P. C. Paris and G. C. Sih:Amer. Soc. Test. Mater. Special Tech. Publ. 381, 1965, p. 30.Google Scholar
  13. 13.
    A. J. Wang:Quart. Appl. Mech., 1954, vol. 11, p. 427.zbMATHGoogle Scholar
  14. 14.
    C. D. Beachem:Met. Trans., 1972, vol. 3, p. 437.CrossRefGoogle Scholar
  15. 15.
    W. W. Gerberich and C. E. Hartbower:Fundamental Aspects of Stress Corrosion Cracking, p. 420, Nat. Assoc. of Corros. Engrs., Houston, 1969.Google Scholar
  16. 16.
    A. S. Tetelman and A. J. McEvily, Jr.:Fracture of Structural Materials, John Wiley and Sons, New York, 1967.Google Scholar
  17. 17.
    F. R. Coe and J. Moreton:Met. Sci. J., 1969, vol. 3, p. 209.CrossRefGoogle Scholar
  18. 18.
    G. M. Evans and E.C.Rollason:J.Iron and Steel Inst., 1969, December, p. 1491.Google Scholar
  19. 19.
    A. J. Kumnick and H. H. Johnson:Met. Trans., 1974, vol. 5, p. 1199.CrossRefGoogle Scholar
  20. 20.
    S. Mostovoy, H. R. Smith, R. G. Lingwall, and E. J. Ripling:Eng. Fract. Mech., 1971, vol. 3, p. 291.CrossRefGoogle Scholar
  21. 21.
    H. L. Dunegan and A. S. Tetelman:Eng. Fract. Meck, 1971, vol. 2, p. 387.CrossRefGoogle Scholar
  22. 22.
    C. S. Carter:Corrosion, 1969, vol. 25, no. 10, p. 423.Google Scholar
  23. 23.
    C. S. Carter:Corrosion, 1971, vol. 27, no. 11, p. 471.Google Scholar
  24. 24.
    V. J. Colangelo and M. S. Ferguson:Corrosion, 1969, vol. 25, no. 12, p. 509.Google Scholar
  25. 25.
    C. S. Carter:Eng. Fract. Mech., 1971, vol. 3, p. 1.CrossRefGoogle Scholar
  26. 26.
    G. E. Kerns and R. W. Staehle:Scripta Met, 1972, vol. 6, p. 631.CrossRefGoogle Scholar
  27. 27.
    W. D. Benjamin and E. A. Steigerwald: Air Force Materials Laboratory Report TR-68-80, 1968.Google Scholar
  28. 28.
    C. S. Kortovich and E. A. Steigerwald:Eng. Fract. Mech., 1972, vol. 4, p. 637.CrossRefGoogle Scholar
  29. 29.
    J. M. Krafft and H. L. Smith: NRL Memo Report 2598, Naval Research Laboratory, Washington, April 1973.Google Scholar
  30. 30.
    W. A. Van Der Sluys:Eng. Fract. Mech., 1968, vol. 1, p. 447.Google Scholar
  31. 31.
    A. M. Sullivan:Eng. Fract. Mech., 1972, vol. 4, p. 65.CrossRefGoogle Scholar
  32. 32.
    J. R. Rice and M. A. Johnson: inInelastic Behavior of Solids, M. F. Kanninen,et al, ed, McGraw-Hill, New York, 1970, p. 641.Google Scholar
  33. 33.
    J. R. Rice and D. M. Tracy: inNumerical and Computer Methods in Structural Mechanics, S. J. Fenves,et al., ed., Academic Press, New York, 1973, p. 585.Google Scholar
  34. 34.
    R. A. Oriani:Bunsen-Gesellshaft Phys. Chem., 1972, vol. 76, p. 848.Google Scholar
  35. 35.
    R. A. Oriani:Acta Met., 1974, vol. 22, p. 1065.CrossRefGoogle Scholar

Copyright information

© American Society for Metals, The Melallurgical Society of AIME 1975

Authors and Affiliations

  • W. W. Gerberich
    • 1
  • Y. T. Chen
    • 1
  • C. ST. John
    • 2
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolis
  2. 2.Centre des Materiaux de l’Ecole des MinesCorbeil-EssoneFrance

Personalised recommendations