Stacking fault energies of seven commercial austenitic stainless steels

  • R. E. Schramm
  • R. P. Reed
Alloy Phases and Structure


The stacking fault energies of seven commercial austenitic Fe-Cr-Ni, Fe-Cr-Ni-Mn and Fe-Mn-Ni alloys have been determined by X-ray diffraction line profile analysis. From comparison with existing data on laboratory alloys with similar compositions, it is concluded that both Ni and C increase γ while Cr, Si, Mn, and N decrease γ. Regression analysis of data produced in this study provides an expression relating γ to commercial alloy composition in terms of Ni, Cr, Mn, and Mo alloy concentrations.


Martensite Metallurgical Transaction Austenitic Stainless Steel Stack Fault Energy AISI 304L 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. Barnartt, R. Stickler, and D. van Rooyen:Corros. Sci., 1963, vol. 13, pp. 9–16.CrossRefGoogle Scholar
  2. 2.
    M. L. Holzworth:Corrosion-NACE, 1969, vol. 25, pp. 107–15.Google Scholar
  3. 3.
    R. B. Benson, R. K. Dann, and L. W. Roberts:Trans. TMS-AIME, 1968, vol. 242, pp. 2199–2205.Google Scholar
  4. 4.
    P. C. J. Gallagher:Met. Trans., 1970, vol. 1, pp. 2429–61.Google Scholar
  5. 5.
    R. P. Reed and R. E. Schramm: National Bureau of Standards, Boulder, Colorado, unpublished research, 1975.Google Scholar
  6. 6.
    M. J. Whelan, P. B. Hirsch, R. W. Home, and W, Bollmann:Proc. Roy. Soc. A, 1957, vol. 240, pp. 524–38.CrossRefADSGoogle Scholar
  7. 7.
    M. J. Whelan:Proc. Roy. Soc. A, 1959, vol. 249, pp. 114–37.CrossRefADSGoogle Scholar
  8. 8.
    P. R. Swann:Corrosion, 1963, vol. 19, pp. 102t-112t.Google Scholar
  9. 9.
    J. F. Breedis:Trans. TMS-AIME, 1964, vol. 230, pp. 1583–96.Google Scholar
  10. 10.
    D. L. Douglass, G. Thomas, and W. R. Roser:Corrosion, 1964, vol. 20, pp. 15t-28t.Google Scholar
  11. 11.
    D. Dulieu and J. Nutting:Metallurgical Developments in High-Alloy Steels, pp. 140–45, Special Report 86, The Iron and Steel Institute, 1964.Google Scholar
  12. 12.
    J. M. Silcock, R. W. Rookes, and J. Barford:J. Iron Steel Inst., 1966, vol. 204, pp. 623–27.Google Scholar
  13. 13.
    A. Clement, N. Clement, and P. Coulomb:Phys. Status. Solidi, 1967, vol. 21, pp. K97-K98.CrossRefGoogle Scholar
  14. 14.
    B. Thomas and G. Henry:Mem. Sci. Rev. Met., 1967, vol. 64, pp. 625–36.Google Scholar
  15. 15.
    B. J. Thomas:Metaux, Corrosion, Industrie, 1969, no. 532, pp. 405–38.Google Scholar
  16. 16.
    O. Vingsbro:Acta Met., 1967, vol. 15, pp. 615–21.CrossRefGoogle Scholar
  17. 17.
    R. Fawley, M. A. Quader, and R. A. Dodd:Trans. TMS-AIME, 1968, vol. 242, pp. 771–76.Google Scholar
  18. 18.
    R. M. Latanision and A. W. Ruff, Jr.:J. Appl. Phys., 1969, vol. 40, pp. 2716–20.CrossRefADSGoogle Scholar
  19. 19.
    L. E. Murr:Thin Solid Films, 1969, vol. 4, pp. 389–412.CrossRefADSGoogle Scholar
  20. 20.
    F. LeCroisey and B. Thomas:Phys. Status. Solidi (a), 1970, vol. 2, pp. K217-K20.CrossRefGoogle Scholar
  21. 21.
    R. M. Latanision and A. W. Ruff, Jr.:Met. Trans., 1971, vol. 2, pp. 505–09.CrossRefGoogle Scholar
  22. 22.
    E. D. Butakova, K. A. Malyshev, and N. I. Noskova:Fiz. Metal. Metalloved., 1973, vol. 35, no. 3, pp. 662–64.Google Scholar
  23. 23.
    L. M. Brown:Phil. Mag., 1964, vol. 10, pp. 441–66.zbMATHCrossRefADSGoogle Scholar
  24. 24.
    R. P. Reed and R. E. Schramm:J. Appl. Phys., 1974, vol. 45, pp. 4705–11.CrossRefADSGoogle Scholar
  25. 25.
    R. R. Vandervoort:Metals Eng. Quart., 1972, vol. 12, pp. 10–16.Google Scholar
  26. 26.
    C. J. Newton and A. W. Ruff, Jr.:J. Appl. Phys., 1966, vol. 37, pp. 3860–68.CrossRefADSGoogle Scholar
  27. 27.
    B. E. Warren:Prog. Metal Phys., 1959, vol. 8, pp. 147–202.CrossRefADSGoogle Scholar
  28. 28.
    R. E. Schramm: National Bureau of Standards Tech. Note 600, 1971.Google Scholar
  29. 29.
    C. P. Gazzara, J. J. Stiglich, Jr., F. P. Meyer, and A. M. Hansen:Advances in X-Ray Analysis, vol. 12, pp. 257, Plenum Press, New York, 1969.Google Scholar
  30. 30.
    R. L. Rothman and J. B. Cohen:Advances in X-Ray Analysis, vol. 12, p. 208, Plenum Press, New York, 1969.Google Scholar
  31. 31.
    Residual Stress Measurement by X-Ray Diffraction, SAE J 784a, p. 51, Society of Automotive Engineers, New York, 1971.Google Scholar
  32. 32.
    K. Salmutter and F. Stangler:Z. Metallic., 1960, vol. 51, pp. 544–48.Google Scholar
  33. 33.
    M. C. Mangalick and F. Fiore:Trans. TMS-AIME, 1968, vol. 242, pp. 2363–64.Google Scholar
  34. 34.
    R. P. Reed:Acta Met., 1962, vol. 10, pp. 865–77.CrossRefGoogle Scholar
  35. 35.
    G. Thomas:Acta Met., 1963, vol. 11, pp. 1369–71.CrossRefGoogle Scholar
  36. 36.
    R. P. Reed and J. F. Breedis:Behavior of Materials at Cryogenic Temperatures, ASTM/STP 387, p. 60, Am. Soc. Testing Mats., 1966.Google Scholar
  37. 37.
    D. V. Neff, T. E. Mitchell, and A. R. Troiano:Trans. ASM, 1969, vol. 62, pp. 858–68.Google Scholar
  38. 38.
    P. G. Hoel:Introduction to Mathematical Statistics, p. 172, John Wiley and Sons, Inc., New York, 1962.Google Scholar
  39. 39.
    P. G. Hoel:ibid., p. 244.Google Scholar

Copyright information

© American Society for Metals, The Melallurgical Society of AIME 1975

Authors and Affiliations

  • R. E. Schramm
    • 1
  • R. P. Reed
    • 1
  1. 1.Cryogenics DivisionInstitute for Basic StandardsBoulder

Personalised recommendations