Selecta Mathematica

, Volume 8, Issue 4, pp 523–535 | Cite as

The Gelfand map and symmetric products

  • V. M. Buchstaber
  • E. G. Rees

Mathematics Subject Classification (2000)

05E05 46E25 

Key words

Symmetric products Frobenius homomorphisms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BR1] V. M. Buchstaber and E. G. Rees. Multi-valued groups, their representations and Hopf algebras.Transformation Groups 1 (1997), 325–349.CrossRefMathSciNetGoogle Scholar
  2. [BR2] V. M. Buchstaber and E. G. Rees. Multi-valued groups,n-Hopf algebras andn-ring homomorphisms. Lie Groups and Lie Algebras. Kluwer Academic Publisher, 1998, 85–107.Google Scholar
  3. [BR3] V. M. Buchstaber and E. G. Rees. Frobeniusk-characters andn-ring homomorphisms.Uspekhi Mat. Nauk 52 (1997), 159–160 (Russian); translation inRussian Math. Surveys 52 (1997), 398–399.Google Scholar
  4. [BR4] V. M. Buchstaber and E. G. Rees. A constructive proof of the generalised Gelfand isomorphism.Funct. Anal. Appl. 35 (2001), 257–260.MATHCrossRefMathSciNetGoogle Scholar
  5. [For] E. Formanek.The polynomial identities and invariants of n×n matrices. Amer. Math. Soc., 1991.Google Scholar
  6. [Fro1] G. Frobenius.Über Gruppencharaktere. Sitzungsber. Preuss. Akad. Wiss. Berlin, 1896, 985–1021.MATHGoogle Scholar
  7. [Fro2] G. Frobenius.Über die Primfaktoren der gruppendeterminante. Sitzungsber. Preuss. Akad. Wiss. Berlin, 1896, 1343–1382.Google Scholar
  8. [HJ] H.-J. Hoehnke and K. W. Johnson. The 1-, 2- and 3-characters determine a group.Bull. Amer. Math. Soc. 27 (1992), 243–245.MATHMathSciNetGoogle Scholar
  9. [Joh] K. W. Johnson. On the group determinant.Math. Proc. Camb. Phil. Soc. 109 (1991), 299–311.MATHCrossRefGoogle Scholar
  10. [W] H. Weyl.The Classical Groups. Princeton Univ. Press, 1946.Google Scholar
  11. A. Bergmann. Formen und Modulen über commutativen Ringen beliebiger Charakteristik.J. Reine Angew. Math. 219 (1965), 113–156.MATHMathSciNetGoogle Scholar
  12. A. Bergmann Hauptnorm und Struktur von Algebren.J. Reine Angew. Math. 222 (1966), 160–194.MATHMathSciNetGoogle Scholar
  13. H.-J. Hoehnke. Über Komponierbare Formen und hypercomplexe Grossen.Math. Zeitschrift 70 (1958), 1–12.MATHCrossRefMathSciNetGoogle Scholar
  14. H.-J. Hoehnke. Über Beziehung zwischen Problemen von H. Brandt aus der Theorie der Algebren und den Automorphismen der Normenform.Math. Nachr. 34 (1967), 15–79.CrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag 2002

Authors and Affiliations

  • V. M. Buchstaber
    • 1
  • E. G. Rees
    • 2
  1. 1.Dept. of Mathematics and MechanicsMoscow State UniversityMoscowRussia
  2. 2.School of MathematicsUniversity of EdinburghEdinburghScotland, UK

Personalised recommendations