, Volume 31, Issue 1, pp S261–S265

Skeletal muscle membrane lipids and insulin resistance

  • L. H. Storlien
  • D. A. Pan
  • A. D. Kriketos
  • J. O'Connor
  • I. D. Caterson
  • G. J. Cooney
  • A. B. Jenkins
  • L. A. Baur
Fatty Acids and Insulin Resistance in Chronic Diseases and Obesity


Skeletal muscle plays a major role in insulin-stimulated glucose disposal. This paper reviews the range of evidence in humans and experimental animals demonstrating close associations between insulin action and two major aspects of muscle morphology: fatty acid composition of the major structural lipid (phospholipid) in muscle cell membranes and relative proportions of major muscle fiber types. Workin vitro andin vivo in both rats and humans has shown that incorporation of more unsaturated fatty acids into muscle membrane phospholipid is associated with improved insulin action. As the corollary, a higher proportion of saturated fats is linked to impairment of insulin action (insulin resistance). Studiesin vitro suggest a causal relationship. Among polyunsaturated fatty acids (PUFA) there is some, but not conclusive, evidence that ω-3 (n−3) PUFA may play a particular role in improving insulin action; certainly a high n−6/n−3 ratio appears deleterious. In relation to fiber type, the more highly oxidative, insulin-sensitive type 1 and type 2a fibers have a higher percentage of unsaturated fatty acids, particularly n−3, in their membrane phospholipid, compared to the insulin-resistant, glycolytic, type 2b fibers. These variables, however, can be separated and may act in synergy to modulate insulin action. It remains to establish whether lifestyle (e.g., dietary fatty acid profile and physical activity), genetic predisposition, or a combination are the prime determinants of muscle morphology (particularly membrane lipid profile) and hence insulin action.



fatty acid binding protein


noninsulin-dependent diabetes mellitus


polyunsaturated fatty acids


unsaturation index


  1. 1.
    Reaven, G.M. (1993) Role of Insulin Resistance in Human Disease (Syndrome X): An Expanded Definition,Ann. Rev. Med. 44, 121–131.PubMedCrossRefGoogle Scholar
  2. 2.
    Björntorp, P. (1991) Visceral Fat Accumulation: The Missing Link Between Psychosocial Factors and Cardiovascular Disease?,J. Int. Med. 230, 195–201.CrossRefGoogle Scholar
  3. 3.
    Reaven, G.M. (1988) Role of Insulin Resistance in Human Disease,Diabetes.37, 1595–1607.PubMedCrossRefGoogle Scholar
  4. 4.
    Bringolf, M., Zaragoza, N., Rivier, D., and Felber, J.-P. (1972) Studies on the Metabolic Effects Induced in the Rat by a High-fat Diet. Inhibition of Pyruvate Metabolism in DiaphragmIn Vitro and Its Relation to the Oxidation of Fatty Acids,Eur. J. Biochem. 26, 360–367.PubMedCrossRefGoogle Scholar
  5. 5.
    Randle, P.J., Garland, P.B., Hales, C.N., and Newsholme, E.A. (1963) The Glucose Fatty-Acid Cycle, its Role in Insulin Sensitivity and the Metabolic Disturbances of Diabetes Mellitus,Lancet 1, 785–789.PubMedCrossRefGoogle Scholar
  6. 6.
    Randle, P.J., Kerbey, A.L., and Espinal, J. (1988) Mechanisms Decreasing Glucose Oxidation in Diabetes and Starvation: Role of Lipid Fuels and Hormones,Diab. Metab. Rev. 4, 623–638.CrossRefGoogle Scholar
  7. 7.
    Ebeling, P., and Koivisto, V.A. (1994) Non-Esterified Fatty Acids Regulate Lipid and Glucose Oxidation and Glycogen Synthesis in Man,Diabetologia 37, 202–209.PubMedCrossRefGoogle Scholar
  8. 8.
    Kraegen, E., James, D.E., Bennett, S.P., and Chisholm, D.J. (1983)In vivo Insulin Sensitivity in the Rat Determined by Euglycemic Clamp,Am. J. Physiol. 245, E1-E7.PubMedGoogle Scholar
  9. 9.
    Burnol, A., Leturque, A., Ferre, P., and Girard, J. (1983) A Method for Quantifying Insulin Sensitivityin vivo in the Anesthetized Rat: The Euglycemic Insulin Clamp Technique Coupled with Isotopic Measurement of Glucose Turnover,Reprod. Nutr. Develop. 23, 429–435.Google Scholar
  10. 10.
    Kraegen, E.W., James, D.E., Jenkins, A.B., and Chisholm, D.J. (1985) Dose-Response Curves forin vivo Insulin Sensitivity in Individual Tissues in Rats,Am. J. Physiol. 248, E353-E362.PubMedGoogle Scholar
  11. 11.
    Jenkins, A.B., Furler, S.M., and Kraegen, E.W. (1986) 2-Deoxy-Glucose Metabolism in Individual Tissues of the RatIn Vivo, Int. J. Biochem. 18, 311–318.PubMedCrossRefGoogle Scholar
  12. 12.
    Kraegen, E.W., James, D.E., Storlien, L.H., Burleigh, K.M., and Chisholm, D.J. (1986)In vivo Insulin Resistance in Individual Peripheral Tissues of the High Fat Fed Rat: Assessment by Euglycaemic Clamp plus Deoxyglucose Administration,Diabetelogia 29, 192–198.CrossRefGoogle Scholar
  13. 13.
    Storlien, L.H., James, D.E., Burleigh, K.M., Chisholm, D.J., and Kraegen, E.W. (1986) Fat Feeding Causes WidespreadIn Vivo Insulin Resistance, Decreased Energy Expenditure, and Obesity in Rats,Am. J. Physiol. 251, E576-E583.PubMedGoogle Scholar
  14. 14.
    Wong, S.H., Nestel, P.J., Trimble, R.P., Storer, G.B., Illman, R.J., and Topping, D.L. (1984) The Adaptive Effects of Dietary Fish and Safflower Oil on Lipid and Lipoprotein Metabolism in Perfused Rat Liver,Biochim. Biophys. Acta. 792, 103–109.PubMedGoogle Scholar
  15. 15.
    Storlien, L.H., Kraegen, E.W., Chisholm, D.J., Ford, G.L., Bruce, D.G., and Pascoe, W.S. (1987) Fish Oil Prevents Insulin Resistance Induced by High-Fat Feeding in Rats,Science 237, 885–888.PubMedCrossRefGoogle Scholar
  16. 16.
    Field, C.J., Ryan, E.A., Thomson, A.R., and Clandinin, M.T. (1988) Dietary Fat and the Diabetic State Alter Insulin Binding and the Fatty Acyl Composition of the Adipocyte Plasma Membrane,Biochem. J. 253, 417–424.PubMedGoogle Scholar
  17. 17.
    Grunfeld, C., Baird, K., and Kahn, C.R. (1981) Maintenance of 3T3-L1 Cells in Culture Media Containing Saturated Fatty Acids Decreases Insulin Binding and Insulin Action,Biochem. Biophys. Res. Commun. 103, 219–226.PubMedCrossRefGoogle Scholar
  18. 18.
    Sohal, P.S., Baracos, V.E., and Clandinin, M.T. (1992) Dietary ω-3 Fatty Acid Alters Prostaglandin Synthesis, Glucose Transport and Protein Turnover in Skeletal Muscle of Healthy and Diabetic Rats,Biochem. J. 286, 405–411.PubMedGoogle Scholar
  19. 19.
    Clandinin, M.T., Cheema, S., Field, C.J., and Baracos, V.E. (1993) Dietary Lipids Influence Insulin Action, inDietary Lipids and Insulin Action (Klimes, I., Howard, B.V., Storlien, L.H., and Sebokova, E., eds.), Vol. 683, Ann. New York Acad. Sci., New York, pp. 151–163.Google Scholar
  20. 20.
    Storlien, L.H., Jenkins, A.B., Chisholm, D.J., Pascoe, W.S., Khouri, S., and Kraegen, E.W. (1991) Influence of Dietary Fat Composition on Development of Insulin Resistance in Rats. Relationship to Muscle Triglyceride and ω-3 Fatty Acids in Muscle Phospholipids,Diabetes 40, 280–289.PubMedCrossRefGoogle Scholar
  21. 21.
    Borkman, M., Storlien, L.H., Pan, D.A., Jenkins, A.B., Chisholm, D.J., and Campbell, L.V. (1993) The Relationship Between Insulin Sensitivity and the Fatty Acid Composition of Phospholipids of Skeletal Muscle,N. Engl. J. Med. 328, 238–244.PubMedCrossRefGoogle Scholar
  22. 22.
    Vessby, B., Tengblad, S., and Lithell, H. (1994) Insulin Sensitivity Is Related to the Fatty Acid Composition of Serum Lipids and Skeletal Muscle Phospholipids in 70-Year-Old Men,Diabetologia 37, 1044–1050.PubMedGoogle Scholar
  23. 23.
    Pan, D.A., Lillioja, S., Milner, M.R., Kriketos, A.D., Baur, L.A., Bogardus, C., and Storlien, L.H. (1995) Skeletal Muscle Membrane Lipid Composition Is Related to Adiposity and Insulin Action,J. Clin. Invest. 96, 2802–2808.PubMedGoogle Scholar
  24. 24.
    Prochazka, M., Lillioja, S., Tait, J.F., Knowler, W.C., Mott, D.M., Spraul, M., Bennett, P.H., and Bogardus, C. (1993) Linkage of Chromosomal Markers on 4q with a Putative Gene Determining Maximal Insulin Action in Pima Indians,Diabetes 42, 514–519.PubMedCrossRefGoogle Scholar
  25. 25.
    Neel, J.V. (1962) Diabetes Mellitus: A Thrifty Genotype Rendered Detrimental by Progress,Am. J. Human Genetics. 14, 353–362.Google Scholar
  26. 26.
    Ravussin, E., and Bogardus, C. (1990) Energy Expenditure in the Obese: Is There a Thrifty Gene?,Infusiostherapie 17, 108–112.Google Scholar
  27. 27.
    Baur, L.A., O'Connor, J., Pan, D.A., and Storlien, L.H. (1994) Determination of Skeletal Muscle Membrane Lipid Composition in Young Children,J. Pediatr. Ch. Health 30, A2.Google Scholar
  28. 28.
    Groop, L.C., Bonadonna, R.C., Simonson, D.C., Petrides, A.S., Shank, M., and DeFronzo, R.A. (1992) Effect of Insulin on Oxidative and Nonoxidative Pathways of Free Fatty Acid Metabolism in Human Obesity,Am. J. Physiol. 263, E79-E84.PubMedGoogle Scholar
  29. 29.
    Pan, D.A., Lillioja, S., and Storlien, L.H. (1995) Muscle Lipid Composition Is Related to Body Fatness and Insulin Action in Humans,Int. J. Obesity 19, 213.Google Scholar
  30. 30.
    Pan, D.A., Lillioja, S., Milner, M.R., and Storlien, L.H. (1994). Skeletal Muscle Structural and Storage Lipid Is Directly Related to Insulin Action in Man, inProceedings from Obesity, Diabetes, and Insulin Resistance, August 25–27, Boston, Satellite Meeting to the 7th International Congress on Obesity.Google Scholar
  31. 31.
    Leyton, J., Drury, P.J., and Crawford, M.A. (1987) Differential Oxidation of Saturated and Unsaturated Fatty AcidsIn Vivo in the Rat,Br. J. Nutr. 57, 383–393.PubMedCrossRefGoogle Scholar
  32. 32.
    James, D.E., Jenkins, A.B., and Kraegen, E.W. (1985) Heterogeneity of Insulin Action in Individual MuscleIn Vivo: Euglycemic Clamp Studies in Rats,Am. J. Physiol. 248, E567-E574.PubMedGoogle Scholar
  33. 33.
    Lillioja, S., Young, A.A., Culter, C.L., Ivy, J.L., Abbott, W.G.H., Zawadzki, J.K., Jki-Järvinen, H., Christin, L., Secomb, T.W., and Bogardus, C. (1987) Skeletal Muscle Capillary Density and Fiber Type Are Possible Determinants ofIn Vivo Insulin Resistance in Man,J. Clin. Invest. 80, 415–424.PubMedCrossRefGoogle Scholar
  34. 34.
    Kriketos, A.D., Lillioja, S., Sutton, J.R., Cooney, G.J., Pan, D.A., Baur, L.A., and Storlien, L.H. (1994) Relationships Between Muscle Morphology Insulin Action and Obesity, inProceedings from Obesity, Diabetes, and Insulin Resistance, August 25–27, Boston, Satellite Meeting to the 7th International Congress on Obesity.Google Scholar
  35. 35.
    Hickey, M.S., Carey, J.O., Azevedo, J.L., Houmard, J.A., Pories, W.J., Israel, R.G., and Dohm, G.L. (1995) Skeletal Muscle Fiber Composition Is Related to Adiposity andIn Vitro Glucose Transport Rate in Humans,Am. J. Physiol. 268, E453-E457.PubMedGoogle Scholar
  36. 36.
    Kriketos, A.D., Lillioja, S., Cooney, G.J., Milner, M., Sutton, J.R., Pan, D.A., Wiersma, M.M.L., Baur, L.A., and Storlien, L.H. (1995) Relationships Between Muscle Metabolism and Obesity,Int. J. Obesity 19 (suppl. 4), S133.Google Scholar
  37. 37.
    Kriketos, A.D., Pan, D.A., Sutton, J.R., Hoh, J.F.Y., Baur, L.A., Cooney, G.J., Jenkins, A.B., and Storlien, L.H. (1995) Relationships Between Muscle Membrane Lipids, Fiber Type and Enzyme Activities in Sedentary and Exercised Rats,Am. J. Physiol. 269, R1154-R1162.PubMedGoogle Scholar
  38. 38.
    Ivy, J., Sherman, W., Cutler, C., and Katz, A. (1986) Exercise and Diet Reduce Muscle Insulin Resistance in Obese Zucker Rat,Am. J. Physiol. 251, E299-E305.PubMedGoogle Scholar
  39. 39.
    Kraegen, E.W., Storlien, L.H., Jenkins, A.B., and James, D.E. (1989) Chronic Exercise Compensates for Insulin Resistance Induced by a High-Fat Diet in Rats,Am. J. Physiol. 256, E242-E249.PubMedGoogle Scholar

Copyright information

© AOCS Press 1996

Authors and Affiliations

  • L. H. Storlien
    • 2
  • D. A. Pan
    • 2
  • A. D. Kriketos
    • 1
  • J. O'Connor
    • 1
  • I. D. Caterson
    • 1
  • G. J. Cooney
    • 1
  • A. B. Jenkins
    • 2
  • L. A. Baur
    • 1
  1. 1.Department of EndocrinologyRoyal Prince Alfred HospitalSydneyAustralia
  2. 2.Department of Biomedical ScienceUniversity of WollongongWollongongAustralia

Personalised recommendations