Advertisement

Geological hazards and water storage

  • Stapledon D. H. 
Symposium 113 Geological Hazards And The Environment

Summary

About 1 percent of the 9000 large dams in service throughout the world during the period 1900–1965 have failed and another 2 percent have suffered serious accidents. In more than 50 percent of these cases the damage could be related to geological causes. This Paper presents brief analyses of 9 projects which have been seriously affected by incidents related to geological causes and derives for each project a list of factors which are judged to have contributed to the incidents. It is shown that a significant number of incidents have occurred due to technological factors which were either unknown or inadequately understood at the time of design or construction of the project. It is concluded that there are undoubtedly still some unknown geotechnical factors in water storage engineering and that designs should continue to allow for this situation. The other contributing factors are mostly concerned with deficiencies in the application of geological science to civil engineering. To overcome such deficiencies an objective-oriented site investigation approach is outlined in which geological methods are applied together with engineering methods, to provide answers to various engineering questions. These questions mostly relate to possible changes to the site environment resulting from construction and operation of the project, and in particular to possible modes of failure of the project. It is considered important that geological data for water storage projects should be obtained in such a systematic manner and that the geological input be provided by experienced geologists with appreciable engineering knowledge. This knowledge may be gained partly from tertiary education institutions but should always include that gained from experience while working closely with geotechnical, design and construction engineers, on construction jobs.

Keywords

Rock Mass Left Bank Rock Substance Slide Mass Excessive Deformation 

Risques Géologiques Et Retenues d’Eau

Résume

Environ 1 % des 9 000 grands barrages qui étaient en service dans le monde entier pendant la période 1900 – 1965 se sont effondrés; en plus de ceux-ci, 2 % ont subi de graves dommages. Dans plus de la moitié de ces cas, on a pu relier ces destructions à des causes géologiques. L’article présente de brèves études sur 9 ouvrages qui ont été gravement affectés par des perturbations liées à des causes géologiques; pour chacun il donne une liste de facteurs qui ont pu contribuer à ces incidents. Il montre qu’un nombre appréciable d’incidents sont dus à des facteurs technologiques qui étaient inconnus ou mal compris à l’époque de l’étude du projet ou de la construction (par voie de conséquence, il y a certainement dans l’art de faire des retenues d’eau, des facteurs géotechniques encore inconnus; aussi les études de projets devraient continuer à tenir compte de cette situation). Les autres facteurs de détérioration sont surtout liés à une application insuffisante de la science géologique au génie civil. Pour pallier ces insuffisances, l’auteur esquisse une méthode d’étude du site visant à répondre à certaines questions telles que les changements possibles de l’environnement (à la suite de la construction et de la mise en opération de l’ouvrage) et en particulier les diverses possibilités d’effondrement de l’ouvrage. On considère comme important que les données géologiques concernant les projets retenues d’eau soient obtenues systématiquement et que l’apport de connaissances géologiques soit fourni par des géologues expérimentés ayant une bonne connaissance du génie civil. Cette connaissance peut être acquise en partie dans des établissements d’enseignement supérieur, mais rien ne remplace celle qu’on aquiert sur des travaux de construction, en collaborant étroitement avec des ingénieurs géotechniciens, des projeteurs et des architectes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    International Commission on Large Dams (1973): Lessons from dam incidents.Google Scholar
  2. 2.
    Committee Report for the State (1928): Causes leading to the failure of the St. Francis Dam: California State Printing Office, Sacramento.Google Scholar
  3. 3.
    RANSOME F.L. (1928): Geology of the St. Francis Dam Site: Econ. Geol., Vol. 23.Google Scholar
  4. 4.
    LEGGETT Robert F. (1962): Geology and Engineering. Mc.Graw Hill, pp. 492–494.Google Scholar
  5. 5.
    CLEMENTS Thomas (1972): St. Francis Dam Failure of 1928, in Engineering Geology in Southern California, Special Publication of the Los Angeles Section of the Association of Engineering Geologists.Google Scholar
  6. 6.
    HILL L.C. et al (1929): Essential facts concerning the failure of St. Francis Dam. Report of the A.S.C.E. Committee. A.S.C.E. Trans. Vol. 94.Google Scholar
  7. 7.
    Commission d’enquête du Barrage de Malpasset, Rapport définitif. Ministère de l’Agriculture, Paris (1960): Translation from French published by the Israel Program for Scientific Translations. U.S. Department of Commerce, Washington 25, D.C.Google Scholar
  8. 8.
    JAEGER C. (1963): The Malpasset Report. Water Power, February 1963.Google Scholar
  9. 9.
    LONDE P. (1967): Panel Discussion, 1st Congress of the International Society of Rock Mechanics, Lisbon. Proceedings Vol. III, pp. 449–453 (in French).Google Scholar
  10. 10.
    KIERSCH George A. (1964): Vajont Reservoir Disaster. Civil Engineering, March 1964, pp. 32–39.Google Scholar
  11. 11.
    MÜLLER L. (1963): The rock slide in the Vajont Valley. Rock Mechanics and Engineering Geology, Vol. 2 pp. 149–212.Google Scholar
  12. 12.
    MÜLLER L. — MALINA H. (1968): Distribution of Shear Stresses in a Progressive Failure Surface. Rock Mechanics and Engineering Geology, Vol. 6 pp. 216–224.Google Scholar
  13. 13.
    State of California, Department of Water Resources (1964): Investigation of Failure, Baldwin Hill Reservoir.Google Scholar
  14. 14.
    Casagrande A. — WILSON S.D. — SCHWANTES E.D. Jnr. (1972): The Baldwin Hills Reservoir Failure in Retrospect. Proc. of the Specialty Conference on Performance of Earth and Earth Supported Structures, A.S.C.E. Vol. 1, pp. 551–588.Google Scholar
  15. 15.
    CORTRIGHT C.J. (1975): Effects of the San Fernando Earthquake on the Van Norman Reservoir Complex. Chapter 29 of Bulletin 196, Calif. Div. of Mines and Geology.Google Scholar
  16. 16.
    JANSEN R.B. — DUKLETH C.W. — BARRETT K.G. (1976): Problems of Hydraulic Fill Dams. Twelfth Int. Congress on Large Dams. Paper R16, on Question 44. Vol. 1, pp. 337–364.Google Scholar
  17. 17.
    GORDON F.R. (1968): Erosion at Bandicoot Bar Dam, Kimberley Division. Department of Mines, Western Australia, Record No. 1968/1.Google Scholar
  18. 18.
    SHERARD J.L. (1973): Embankment Dam Cracking. pp. 308–312 in Embankment Dam Engineering, ”Casagrande Volume” Ed. Hirschfeld and Poulos.Google Scholar
  19. 19.
    SHERARD J.L. (1972): Piping in Earth Dams of Dispersive Clay. Proc. of the Specialty Conference on Performance of Earth and Earth Supported Structures, A.S.C.E. Vol. 1., p. 613.Google Scholar
  20. 20.
    New Civil Engineer, 3 October, 1974. Tarbela’s Tunnel Drama, Exclusive.Google Scholar
  21. 21.
    New Civil Engineer, 18 October, 1975. Insurers reject ”largest-ever” civils claims.Google Scholar
  22. 22.
    FREI L.R. (1975): Auburn Dam Foundation Investigation, Design and Construction. Paper prepared for visit by Association of Engineering Geologists.Google Scholar
  23. 23.
    Sacramento Bee (1976): The Safety of Auburn Dam. Editorial, 8 April, 1976.Google Scholar
  24. 24.
    International Society for Rock Mechanics (1975): Recommendations on Site Investigation Techniques, Final Report.Google Scholar
  25. 25.
    JOHN K.W. (1974): Geologists and Civil Engineers in the design of foundation of dams. Proc. 2nd Int. Cong. of I.A.E.G., San Paulo, Brazil. Vol. 2, VI-PC-3.Google Scholar
  26. 26.
    TERZAGHI K. (1957): Presidential address to Fourth International Conference on Soil Mechanics and Foundation Engineering. Published in Bjerrum et al, 1960. From Theory to Practice in Soil Mechanics, pp. 75–78.Google Scholar

Copyright information

© International Association of Engineering Geology 1976

Authors and Affiliations

  • Stapledon D. H. 
    • 1
  1. 1.Consulting EngineersCoffey & Partners Pty. Ltd.AdelaideSouth Australia

Personalised recommendations