Advertisement

Problems in shallow land disposal of solid low-level radioactive waste in the united states

  • Stevens Peter R. 
  • Debuchananne George D. 
Section 13 Engineering Geology

Summary

Disposal of solid low-level wastes containing radionuclides by burial in shallow trenches was initiated during World War II at several sites as a method of protecting personnel from radiation and isolating the radionuclides from the hydrosphere and biosphere. Today, there are 11 principal shallow-land burial sites in the United States that contain a total of more than 1.4 million cubic meters of solid wastes contaminated with a wide variety of radionuclides. Criteria for burial sites have been few and generalized and have contained only minimal hydrogeologic considerations. Waste-management practices have included the burial of small quantities of long-lived radionuclides with large volumes of wastes contaminated with shorter-lived nuclides at the same site, thereby requiring an assurance of extremely long-time containment for the entire disposal site.

Studies at 4 of the 11 sites have documented the migration of radionuclides. Other sites are being studied for evidence of containment failure. Conditions at the 4 sites are summarized. In each documented instance of containment failure, ground water has probably been the medium of transport. Migrating radionuclides that have been identified include90Sr,137Cs,106Ru,239Pu,125Sb,60Co, and3H.

Shallow land burial of solid wastes containing radionuclides can be a viable practice only if a specific site satisfies adequate hydrogeologic criteria. Suggested hydrogeologic criteria and the types of hydrogeologic data necessary for an adequate evaluation of proposed burial sites are given. It is mandatory that a concomitant inventory and classification be made of the longevity, and the physical and chemical form of the waste nuclides to be buried, in order that the anticipated waste types can be matched to the containment capability of the proposed sites.

Ongoing field investigations at existing sites will provide data needed to improve containment at these sites and help develop hydrogeologic criteria for new sites. These studies have necessitated the development of special drilling, sampling, well construction, and testing techniques. A recent development in borehole geophysical techniques is downhole spectral gammaray analysis which not only locates but identifies specific radionuclides in the subsurface.

Field investigations are being supplemented by laboratory studies of the hydrochemistry of the transuranic elements, the kinetics of solid-liquid phase interactions, and the potential complexing of radionuclides with organic compounds and solvents which mobilize normally highly sorbable nuclides. Theoretical studies of digital predictive solute transport models are being implemented to assure their availability for application to problems and processes identified in the field and laboratory.

Keywords

Radionuclide Trench Burial Burial Site Burial Ground 

Problemes Dus A L’enfouissement, A Faible Profondeur, De Déchets Radioactifs De Basse Activité, Aux Et Ats-Unis

Résumé

Les Etats-Unis avaient commencé après la guerre, le stockage des déchets solides radioactifs dans des fosses peu profondes pour protéger le personnel et pour isoler les radionuclides de l’hydrosphère et de la biosphère. Aujourd’hui, aux Etats-Unis, onze site de stockage contenant plus de 1,4 × 106m3 de déchets solides sont contaminés par un grand mélange de radionuclides. Les rares critères utilisés pour choisir les sites de stockage étaient très généraux se souciaient fort peu de l’hydrogéologie. La pratique de la gestion des rejets radioactifs était telle qu’on trouve dans le même site de stockage de petites quantités de radioéléments à période longue mélangés à de grands volumes de déchets contenant des radioéléments à periode courte, ce qui oblige donc à une longue surveillance du site. La migration des radionuclides dans le sol a été étudiée dans quatre sites, les autres sont à l’étude. L’article donne un résumé des conditions qui règnent sur les quatre sites où l’eau souterraine a été probablement le moyen de transport de radionuclides parmi lesquels on a identifié 90 Sr, 137 Cs, 106 Ru, 239 Pu, 125 Sb, 60 Co, et 3 H. L’enfouissement peu profond des déchets solides radioactifs ne peut être considéré comme one partique acceptable que si le site présente certains critères hydrologiques satisfaisants. Le rapport suggere certains critères hydrogéologiques et certains types de données permettant une évaluation satisfaisante du site de stockage. En même temps, pour relier le type des déchets avec la capacité d’assimilation du milieu récepteur, il faut avoir une liste des radionuclides et de leurs longévités aussi que des données sur leurs formes physiques et chimiques.

Les études de terrain entreprises sur les sites existants donneront les renseignements nécessaires pour améliorer leur capacité de stockage et pour mettre au point des critères hydrogéologiques pour nouveaux sites. Ces études nécessitèrent la mise au point de méthodes spéciales pour le forage, l’échantillonnage, la construction des puits, et les essais de mesures. Une application de la géophysique aux eaux souterraines est l’analyse spectrale des rayons gamma dans le puits, ce qui permet la localisation ainsi que l’identification des radionuclides spécifiques dans le sous-sol.

Les investigations sur le terrain sont accompagnées d’études de laboratoire sur l’hydrochimie des éléments transuraniens, la cinétique des interactions entre phases solide et liquide, et la possibilité de complexer des radionuclides avec des composés organiques et des dissolvants qui rendent mobiles des nuclides normalement très aptes à l’adsorption par le sol. On prépare aussi des modèles mathématiques numériques sur le transport des solutés pour les appliquer aux problèmes et aux processus qui sont identifiés sur le terrain et au laboratoire.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AUERBACK S.I. — CROSSLAY D.A. Jr. — DUNAWAY P.B. — HOWDEN H.F. — GRAHAM E.R. — BOHNSACK K.K. — PRYOR M.E. — KRAUTH C. — ANDERSON R.M. (1958): Ecological researchin Health Physics Division annual progress report for period ending July 31, 1958: U.S. Atomic Energy Commission, Oak Ridge National Laboratory (Rept.) ORNL-2590, p. 27–41.Google Scholar
  2. BARRACLOUGH J.T. — ROBERTSON J.B. — JANZER V.J. (1976): Hydrology of the solid waste burial ground, related to the potential migration of radionuclides, Idaho National Engineering Laboratory: U.S. Geological Survey Open-File Report 76–471, 93 p., Appendix.Google Scholar
  3. DUQUID J.O. (1975): Status of radioactivity movement from burial grounds in Melton and Bethel Valleys: Oak Ridge National Laboratory, ORNL-5017, Environmental Sciences Division Publication 658, 66 p.Google Scholar
  4. KENTUCKY DEPARTMENT OF HUMAN RESOURCES, Bureau for Health Services, Office of Consumer Health Protection, Radiation and Product Safety Branch (1974): Six month study of radiation concentration and transport mechanisms at the Maxey Flats area of Fleming County, Kentucky: Kentucky Department of Human Resources Open-File Report.Google Scholar
  5. McDOWELL R.C. — PECK J.H. — MYTTON J.W. (1971): Geologic map of the Plummers Landing quadrangle, Fleming and Rowan Counties, Kentucky: U.S. Geol. Survey, Map GO-964.Google Scholar
  6. MEYER G.L. (1975): Preliminary data on the occurrence of transuranium nuclides in the environment at the radioactive waste burial site Maxey Flats, Kentucky: IAEA/ERDA International Symposium on Transuranium Nuclides in the Environment, San Francisco, California, November 17–21.Google Scholar
  7. NEW YORK DEPARTMENT OF ENVIRONMENTAL CONSERVATION (1975): Radioactivity in air, milk, and water, Jan–Mar 1975: State of New York, Environmental Radiation Bulletin No. 1.Google Scholar
  8. PAPADOPULOS S.S. — WINOGRAD I.J. (1974): Storage of low-level radioactive wastes in the ground: Hydrogeologic and hydrochemical factors with an appendix on the Maxey Flats, Kentucky, radioactive waste storage site: Current knowledge and data needs for a quantitative hydrogeologic evaluation: U.S. Geol. Survey Open-File report 74–344, 49 p.Google Scholar
  9. ROWE W.D. — HOLCOMB W.F. (1974): The hidden commitment of nuclear waste: Nuclear technology, Vol. 24.Google Scholar
  10. STRUXNESS E.G. (1962): General description of Oak Ridge site and surrounding areas-hazards evaluation, V. 2: U.S. Atomic Energy Commission, Oak Ridge National Laboratory (Rept), ORNL-TM-323, 35 p.Google Scholar
  11. U.S. NUCLEAR REGULATORY COMMISSION (1975): Report of the NRC Review Group regarding Maxey Flats, Kentucky, commercial radioactive waste burial ground: U.S. Nuclear Regulatory Commission, July 7.Google Scholar

Copyright information

© International Association of Engineering Geology 1976

Authors and Affiliations

  • Stevens Peter R. 
    • 1
  • Debuchananne George D. 
    • 1
  1. 1.National CenterU.S. Geological SurveyRestonU.S.A.

Personalised recommendations