Advertisement

Crystallochemistry of clay minerals and their properties

  • V. I. Osipov
  • E. M. Sergeev
Formation Of Clays And Their Engineering-Geological Properties

Abstract

Experimental studies on a series of three-layer minerals (pyrophyllite, montmorillonite, hydromica, biotite) have shown the dependence of intercrystalline swelling in these minerals on the degree and localization of isomorphic substitutions in the crystals. With the increase of the magnitude of isomorphic substitutions, the degree of intercrystalline swelling will at first rise and then decline. It has also been shown that the increase of isomorphic substitutions in the tetrahedral layer raises the non-exchangeable K+ ion content in these minerals and lowers their swelling capacity.

Measurements of clay particle orientation in electrostatic field at different pH values of the medium indicate that the edges of clay mineral crystals have a positive charge in the acid medium and a negative charge in the alkaline medium, which confirms the views previously expressed by Van Olphen, Schofield and Samson. The data obtained suggest that in the acid medium the basal surfaces and the edges of clay mineral particles have an opposite double electric layer. These observations make it possible to explain a number of structural-mechanical features of clays and thus to get a more comprehensive understanding of the nature of their strength.

Keywords

Clay Montmorillonite Clay Mineral Kaolinite Double Electric Layer 

Résumé

Des études expérimentales sur une série de minéraux à trois couches (pyrophyllite, montmorillonite, hydromica, biotite) ont montré que le gonflement intercristallin, dans ces minéraux, dépend du degré et de la localisation des substitutions isomorphiques dans les cristaux. Quand l’importance des substitutions isomorphiques s’accroît, le degré du gonflement intercristallin commence par s’accroître et ensuite diminue. Il a été prouvé également que l’augmentation des substitutions isomorphiques dans la couche à tétraèdres augmente la quantité d’ions K+ non échangeables dans ces minéraux et diminue leur capacité de gonflement.

Des mesures d’orientation des particules d’argile dans un champ électrostatique, dans des milieux de différents pH, montrent que les arêtes des cristaux des minéraux argileux présentent une charge positive en milieu acide et une charge négative en milieu alcalin, ce qui confirme les idées déjà exprimées par Van Olphen, Schofield et Samson. Les résultats obtenus conduisent à penser qu’en milieu acide les surfaces de base et les arêtes des particules de minéraux argileux présentent des charges électriques opposées. Ces observations permettent d’expliquer de nombreux caractères structuraux et mécaniques des argiles et, par conséquent, d’acquérir une compréhension plus complète de la nature de leur solidité.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Brindley G.W. andRobinson K. — Randomness in th Structure of the Kaolinitic Clay Mineral.Trans Faraday Society, 42B, p. 198, 1946.CrossRefGoogle Scholar
  2. Brindley G.W., MacEwan D.M.C. — Structural Aspects the Mineralogy of Clays and Related Silicates «Ceramics, A Symposium», British Ceramic Society, pp. 15–59, 1953.Google Scholar
  3. Brown G. (Editor). — X-ray Identification and Crysta Structures of Clay Minerals. London, 1961.Google Scholar
  4. Crebs R.D., Thomas G.W., Moore J.E. — Anion Influence on some Soil Physical Properties. «Proc. 9th Natio nal Conf. on Clay and Clay Minerals», Pergamo Press, 1962.Google Scholar
  5. Davidtz J.C., Low Ph.F. — Relation Between Crysta Lattice Configuration and Swelling of Montmorillo nites.Clay and Clay Minerals, vol. 18, pp. 325–332 1970.CrossRefGoogle Scholar
  6. Foster M.D. — The Relation between Composition an Swelling in Clays.Clays and Clay Minerals, vol. 3 pp. 205–220, 1955.CrossRefGoogle Scholar
  7. Gaudette H.E., Eades I.L., Crim R.E. — The Nature Illite. «Proc. 13th National Conf. on Clay and Cla Minerals», pp. 33–49, Pergamon Press, 1966.Google Scholar
  8. Hardward M.R., Brindley G.W. — Swelling Properties Synthetic Smectites in Relation to Lattice Substiti tions. «Proc. 13th National Conf. on Clays an Clay Minerals», pp. 209–222, Pergamon Press, 1966Google Scholar
  9. Hendricks S.B. — Crystal Structure of Clay Mineral and some Properties of Clays.J. Geology, v. 56 pp. 276–290, 1942.CrossRefGoogle Scholar
  10. Hofmann U., Weiss A., Koch G., Mehler A., Scholz A. — Intracrystalline Swelling, Cation Exchange an Anion Exchange of Minerals of the Montmorillonit Group and of Kaolinite. «Proc. 4th National Con on Clays and Clay Minerals», pp. 273–287, Publication 456, Washington D.C., 1956.Google Scholar
  11. Kerns R.L., Mankin Ch.I. — Structural Charge Sit Influence on the Interlayer Hydration of Expar dable Three-Sheet Clay Minerals.Clays and Cla Minerals, vol. 16, no 1, pp. 13–81, 1968.Google Scholar
  12. Koisumi M., Roy R. — Synthetic Montmorillonoids wit Variable Exchange Capacity.Am. Mineralogist. 4 788–805, 1959.Google Scholar
  13. Kukovsky Y.G. — Structural Features and Physico-chem cal Properties of Clay Minerals. Kiev, «Naukov Dumka» Publishing House, 1966.Google Scholar
  14. Kulchitsky L.I. — Crystallochemical Features of the Surface of Clay Minerals and their Surface Dissociation in the Aqueous Medium.Kolloidny Zhurnal (Kolloidal Journal), Vol. 32, no 4, 1970.Google Scholar
  15. Lambe W.T. — The Structure of Inorganic Soils.Proc. Am. Soc. of Civil Eng., no 315, 1953.Google Scholar
  16. Marshall C.E. — The Physical Chemistry and Mineralogy of Soils, Vol. 1: — Soil Materials. John Wiley and Sons, N.Y., 1954.Google Scholar
  17. Martin R.T. — Quantative Fabric of Wet Kaolinite. «Proc. National Conf. on Clays and Clay Minerals», pp. 271–287, 1966.Google Scholar
  18. Murray H.H., Lyons S.C. — Correlation of Paper-Coating Quality with Degree of Crystal Perfection of Kaolinite. «Proc. 4th National Conf. on Clays and Clay Minerals», pp. 31–40, Washington D.C., 1956.Google Scholar
  19. Murray H.H., Lyons S.C. — Further Correlations of Kaolinite Crystallinity with Chemical and Physical Properties. «Proc. 8th National Conf. on Clays and Clay Minerals, pp. 11–17, 1960.CrossRefGoogle Scholar
  20. Okuda S., Inoue K., Williamson W.O. — Negative Surface Charges of Pyrophyllite and Talc. «Proc. International Clay Conf.», Vol. 1, pp. 31–31, Tokyo, 1969.Google Scholar
  21. Ponomaryov V.V., Raitburd T.M. — Technique of Diffractometric Studies of the Axial Structures in Clays. «Rentgenography of Minerals». Vol. 5. Moscow, «Nauka» Publishing House, 1966.Google Scholar
  22. Quirk I.P., Theng B.K.G. — Effect of Surface Intensity of Charge on Physical Swelling of Lithium Montmorillonite.Nature, Vol. 187, pp. 967–968, 1960.CrossRefGoogle Scholar
  23. Robertson H.S., Brindley G.W., Mackenzie R.C. — Mineralogy of Kaolin Clays from Pugu, Tanganyika.Am. Mineralogist, 39, 118–139, 1954.Google Scholar
  24. Rosenquist I.Th. — The Influence of Physicochemical Factor upon the Mechanical Properties of Clays.Norwegian Geotechnical Institute, Publ. 54, Oslo, 1963.Google Scholar
  25. Schofield R.K., Samson H.R. — The Deflocculation of Kaolinite Suspensions and the Accompanying Changover from Positive to Negative Chloride Adsorption.Clay Min. Bull., vol. 2, 1953.CrossRefGoogle Scholar
  26. Schofield R.K., Sampson H.R. — Flocculation of Kaolinite due to the Attraction of Oppositely Changed Crystal Faces.Discussions of the Faraday Society, no 18, pp. 135–145, 1954.Google Scholar
  27. Sergeyev Y.M., Zlochevskaya R.I., Ziangirov R.S. et al. — Bound Water and Strength of Clays.Vestnik Moskovskogo Universiteta (Moscow University Herald). Geological Series. No 3, 1968.Google Scholar
  28. Slonimskaya M.V. — Studies of Bound Water Mobility and Structure with the Help of Nuclear Magnetic Resonance Spectra. «Physical Methods of Studying Sedimentary Rock Minerals» Moscow, «Nauka» Publishing House, 1966.Google Scholar
  29. Tan Tyong-ky. — Structural Mechanics of Clays. «Problems of Geotechnics». Vol. 3. Dnyepropetrovsk, 1959.Google Scholar
  30. Van Olphen. — Rheological Phenomena of Clay Soils in Connection with the Charge Distribution on the Micelles.Discussion Faraday Soc., 11, (The Size and Shape Factor in Colloidal Systems) 82–84. 1951.CrossRefGoogle Scholar
  31. White I.L. — Reactions of Molten Salts with Layer-Lattice Silicates. «Proc. 4th National Conf. on Clays and Clay Minerals», 133–146, 1956.Google Scholar
  32. White I.L. — Layer Charge and Interlamellar Expansion in Muscovite. «Proc. 5th National Conf. on Clays and Clay Minerals», 289–294, 1958.Google Scholar
  33. Zlochevskaka R.I. — Bound Water in Clays. Moscow, Moscow University Publishing House, 1969.Google Scholar

Copyright information

© International Association of Engineering Geology 1972

Authors and Affiliations

  • V. I. Osipov
    • 1
  • E. M. Sergeev
    • 1
  1. 1.USSR

Personalised recommendations