Theoretical and Mathematical Physics

, Volume 113, Issue 3, pp 1520–1529 | Cite as

Quantum volterra model and the universalR-matrix

  • A. V. Antonov


We prove that an integrable system solved by the quantum inverse scattering method can be described by a purely algebraic object (universal R-matrix) and a proper algebraic representation. For the quantum Volterra model, we construct the L-operator and the fundamental R-matrix from the universal R-matrix for the quantum affine algebra Uq(ŝl2) and the q-oscillator representation for it. Thus, there is an equivalence between an integrable system with the symmetry algebra A and the representation of this algebra.


Imaginary Root Quantum Space Volterra Model Auxiliary Space Baxter Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii,Theory of Solitons. The Method of Inverse Scattering, Nauka, Moscow (1980), English translation: Plenum (1984).Google Scholar
  2. 2.
    L. D. Faddeev and L. A. Takhtajan, “Liouville model on the lattice,” in:Field Theory, Quantum Gravity and Strings, Springer, Berlin Heidelberg New York (1986), p. 166.Google Scholar
  3. 3.
    A. Volkov,Phys. Lett. A,167, 345 (1992).CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    O. Babelon,Phys. Lett. B,238, 234 (1990).CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    E. K. Sklyanin, L. A. Takhtajan, and L. D. Faddeev,Theor. Math. Phys.,40, 688 (1979).CrossRefGoogle Scholar
  6. 6.
    S. Khoroshkin, A. Stolin, and V. Tolstoy,Mod. Phys. Lett. A,10, 1375 (1995).zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    L. Faddeev,Int. J. Mod. Phys. A,10, 1845 (1995).zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    R. Baxter,Exactly Solved Models in Statistical Mechanics, Academic Press, London (1982).zbMATHGoogle Scholar
  9. 9.
    V. Bazhanov, S. Lukyanov, and A. Zamolodchikov, “Integrable structure of conformal field theory II.Q-operator and DDV equation,” hep-th/9604044.Google Scholar
  10. 10.
    E. Damaskinsky and P. Kulish, “Irreducible representations of deformed oscillator algebra andq-special functions,” q-alg/9610002.Google Scholar
  11. 11.
    A. Antonov and B. Feigin,Phys. Lett. B,392, 115 (1997).CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    V. O. Tarasov, L. A. Takhtajan, and L. D. Faddeev,Theor. Math. Phys.,57, 1059 (1983).CrossRefMathSciNetGoogle Scholar
  13. 13.
    V. Fateev and A. B. Zamolodchikov,Phys. Lett. A,92, 37 (1982).CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    L. D. Faddeev and A. Volkov,Phys. Lett. B,315, 311 (1993).zbMATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    A. Izergin and V. Korepin,Lett. Math. Phys.,5, 199 (1981).CrossRefMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • A. V. Antonov
    • 1
    • 2
  1. 1.L. D. Landau Institute for Theoretical PhysicsMoscowRussia
  2. 2.Laboratoire de Physique Théorique et Hautes Energies Université Pierre et Marie CurieParisFrance

Personalised recommendations