Advertisement

Theoretical and Mathematical Physics

, Volume 113, Issue 3, pp 1508–1519 | Cite as

Representations of general commutation relations

  • I. V. Mingalev
  • O. V. Mingalev
  • V. V. Vedenyapin
Article

Abstract

General commutation relations involving creation, annihilation, and particle number operators are considered. Such commutation relations arise in the context of nonstandard Poisson brackets. All possible types of irreducible representations in which the particle number operator or the product of the creation and annihilation operators has a basis of orthonormal eigenvectors are constructed. The irreducible representations that involve the particle number operator reduce to one of four types and those that do not involve the particle number operator reduce to one of five types.

Keywords

Linear Operator Irreducible Representation Representation Space Annihilation Operator Classification Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Perina,Quantum Statistics of Linear and Nonlinear Optical Phenomena, Reidel, Dordrecht-Boston-Lancaster (1984).Google Scholar
  2. 2.
    N. N. Bogoliubov and N. N. Bogoliubov Jr.,Introduction to Quantum Statistical Mechanics [in Russian], Nauka, Moscow (1984), English translation of previous edition: Taylor and Francis, Philadelphia (1982).Google Scholar
  3. 3.
    M. Salerno and A. C. Scott,Nonlinearity,4, 853 (1991).zbMATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    I. Ya. Aref’eva and I. V. Volovich,Phys. Lett. B,268, 179 (1991).CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    S. De Filippo, M. Fusco Girard, and M. Salerno,Nonlinearity,2, 477 (1989).zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Yu. N. Orlov and V. V. Vedenyapin,Mod. Phys. Lett. B,9, No. 5, 291 (1995).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    E. Celengini, M. Rasetti, and G. Vitiello,Phys. Rev. Lett.,66, 2056 (1991).CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    R. Jagannathan, P. Sridhar, R. Vasudevant, S. Chaturvedi, M. Krishnakumari, P. Shanta, and V. Srinivasson,J. Phys. A.: Math. Gen.,25, 1 (1992).CrossRefGoogle Scholar
  9. 9.
    V. S. Gerjikov, M. I. Ivanov, and P. P. Kulish,J. Math. Phys.,25, 25 (1984).CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    O. V. Mingalev, Yu. N. Orlov, and V. V. Vedenyapin,Phys. Lett. A,233, 246 (1996).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    M. V. Karasev and V. P. Maslov,Nonlinear Poisson Brackets. Geometry and Quantization [in Russian], Nauka, Moscow (1991), English translation: Am. Math. Soc., Providence (1993).zbMATHGoogle Scholar
  12. 12.
    V. V. Vedenyapin and Yu. N. Orlov,Dokl. Rossiisk. Akad. Nauk,351, 444 (1996).MathSciNetGoogle Scholar
  13. 13.
    V. V. Vedenyapin and O. V. Mingalev,Dokl. Rossiisk. Akad. Nauk,352, 155 (1997).MathSciNetGoogle Scholar
  14. 14.
    É. E. Vaisleb and Yu. S. Samoilenko,Ukr. Mat. Zh.,42, 1011 (1990).MathSciNetGoogle Scholar
  15. 15.
    V. V. Vedenyapin and O. V. Mingalev, “Representation of general commutation relations. Conservation laws for quantum Hamiltonians,” Preprint Inst. Applied Math., Russian Acad. of Sciences, No. 30 (1995).Google Scholar
  16. 16.
    V. V. Vedenyapin and O. V. Mingalev, “Semi-boundedness and the asymptotic behavior of the spectrum of three quantum Hamiltonians,” Preprint Inst. Applied Math., Russian Acad. of Sciences, No. 49 (1995).Google Scholar
  17. 17.
    Feng Pan,J. Math. Phys.,35, 5065 (1994).zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    S. P. Novikov,Russ. Math. Surv.,37, 1 (1982).zbMATHCrossRefGoogle Scholar
  19. 19.
    C. Quesne,Phys. Lett. A,193, 245 (1994).zbMATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    C. Delbecq and C. Quense,J. Phys. A,26, L127 (1993).Google Scholar
  21. 21.
    C. Delbecq and C. Quense,Phys. Lett. B,300, 227 (1993).CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    E. K. Sklyanin,Funct. Anal. Appl.,16, 263 (1983).CrossRefGoogle Scholar
  23. 23.
    V. G. Drinfel’d, in:Proceedings of the IMC, Univ. of California, Berkeley (1986), p. 798.Google Scholar
  24. 24.
    M. Jimbo,Lett. Math. Phys.,11, 247 (1986).zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    L. Faddeev and L. Takhtadzhyan (Takhtadjan),Russ. Math. Surv.,4, 11 (1979).Google Scholar
  26. 26.
    L. Faddeev, N. Reshetikhin, and L. Takhtadzhyan (Takhtadjan),Algebra Analiz,1, 129 (1988).Google Scholar
  27. 27.
    A. Solomon and J. Katriel,J. Phys. A,23, L1209 (1990).Google Scholar
  28. 28.
    P. P. Raychev, R. P. Roussev, and Yu. F. Smirnov,J. Phys. G,16, L137 (1991).Google Scholar
  29. 29.
    D. Bonatsos, S. B. Drenska, P. P. Raychev, R. P. Roussev, and Yu. F. Smirnov,J. Phys. G,17, L67 (1991).Google Scholar
  30. 30.
    É. E. Vaisleb and Yu. S. Samoilenko,Selecta Mathematica (formerlySovietica),13, No. 1, 35 (1994).zbMATHMathSciNetGoogle Scholar
  31. 31.
    É. E. Vaisleb (E. E. Vaysleb),Ukr. Mat. Zh.,42, 1258 (1990).MathSciNetGoogle Scholar
  32. 32.
    S. S. Sharma,Phys. Rev. C,46, 904 (1992).CrossRefADSGoogle Scholar
  33. 33.
    F. Pan,Acta Phys. Sinica,42, 867 (1993).zbMATHMathSciNetGoogle Scholar
  34. 34.
    D. Bonatsosa and C. Daskaloyannis,Phys. Lett. B,278, 1 (1992).CrossRefADSGoogle Scholar
  35. 35.
    C. Daskaloyannis,J. Phys. A,25, 2261 (1992).zbMATHCrossRefADSMathSciNetGoogle Scholar
  36. 36.
    E. K. Sklyanin,Dokl. Akad. Nauk SSSR,244, 1337 (1979).MathSciNetGoogle Scholar
  37. 37.
    K. Yosida,Functional Analysis, Springer, Berlin-Göttingen-Heidelberg (1965).zbMATHGoogle Scholar
  38. 38.
    M. A. Krasnosel’skii, P. P. Zabreiko, E. I. Pustyl’nik, and P. E. Sobolevskii,Integral Operators in the Spaces of Summable Functions [in Russian], Nauka, Moscow (1966).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • I. V. Mingalev
    • 1
  • O. V. Mingalev
    • 1
  • V. V. Vedenyapin
    • 2
  1. 1.Polar Geophysical Institute, Kola Science CenterRussian Academy of SciencesApatity, Murmansk RegionRussia
  2. 2.Keldysh Institute for Applied MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations