A method for the isolation and serial propagation of keratinocytes, endothelial cells, and fibroblasts from a single punch biopsy of human skin

  • J. Normand
  • M. A. Karasek
Cellular Models


When multiple types of cells from normal and diseased human skin are required, techniques to isolate cells from small skin biopsies would facilitate experimental studies. The purpose of this investigation was to develop a method for the isolation and propagation of three major cell types (keratinocytes, microvascular endothelial cells, and fibroblasts) from a 4-mm punch biopsy of human skin.

To isolate and propagate keratinocytes from a punch biopsy, the epidermis was separated from the dermis by treatment with dispase. Keratinocytes were dissociated from the epidermis by trypsin and plated on a collagen-coated tissue culture petri dish. A combination of two commercial media (Serum-Free Medium and Medium 154) provided optimal growth conditions.

To isolate and propagate microvascular endothelial cells from the dermis, cells were released following dispase incubation and plated on a gelatin-coated tissue culture dish. Supplementation of a standard growth medium with a medium conditioned by mouse 3T3 cells was required for the establishment and growth of these cells. Epithelioid endothelial cells were separated from spindle-shaped endothelial cells and from dendritic cells by selective attachment toUlex europeus agglutinin I-coated paramagnetic beads.

To establish fibroblasts, dermal explants depleted of keratinocytes and endothelial cells were attached to plastic by centrifugation, and fibroblasts were obtained by explant culture and grown in Dulbecco’s modified Eagle’s medium (DMEM) containing fetal bovine serum (FBS).

Using these isolation methods and growth conditions, two confluent T-75 flasks of keratinocytes, one confluent T-25 flask of purified endothelial cells, and one confluent T-25 flask of fibroblasts could be routinely obtained from a 4-mm punch biopsy of human skin. This method should prove useful in studies of human skin where three cell types must be grown in sufficient quantities for molecular and biochemical analysis.

Key words

isolation propagation keratinocytes microvascular endothelial cells fibroblasts human skin biopsy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auerbach, R.; Plendl, J.; Kusha, B. Endothelial cell heterogeneity and differentiation. In: Maragoudakis, M., ed. Angiogenesis in health and disease. New York: Plenum Press; 1992:55–62.Google Scholar
  2. 2.
    Bensch, K. G.; Davison, P. M.; Karasek, M. A. Factors controlling the in vitro growth pattern of human microvascular endothelial cells. J. Ultrastruct. Res. 82:76–89; 1983.PubMedCrossRefGoogle Scholar
  3. 3.
    Birdwell, C. R.; Gospodarowicz, D. Factors from 3T3 cells stimulate proliferation of cultured vascular endothelial cells. Nature 268:528–531; 1977.PubMedCrossRefGoogle Scholar
  4. 4.
    Breidahl, A. F.; Judson, R. T.; Clunie, G. J. A. Review of keratinocyte culture techniques: problems of growing skin. Aust. N. Z. J. Surg. 59:485–497; 1989.PubMedGoogle Scholar
  5. 5.
    Cox, R.; Masson, W. K. Quantitative clonogenic cell techniques in studies with human diploid fibroblasts. In: Potten, C. S.; Hendry, J. H., eds. Cell clones: manual of mammalian cell techniques. New York: Churchill-Livingstone; 1985:170–174.Google Scholar
  6. 6.
    Daley, J. P.; Epstein, D. A.; Hawley-Nelson, P. Growth of human epidermal keratinocytes in keratinocyte serum-free medium. Focus 12:68–71; 1990.Google Scholar
  7. 7.
    Davison, P. M.; Bensch, K.; Karasek, M. A. Isolation and growth of endothelial cells from the microvessels of the newborn human foreskin in cell culture. J. Invest. Dermatol. 75:316–321; 1980.PubMedCrossRefGoogle Scholar
  8. 8.
    Davison, P. M.; Bensch, K.; Karasek, M. A. Isolation and long-term serial cultivation of endothelial cells from the microvessels of the adult human dermis. In Vitro 19:937–945; 1983.PubMedGoogle Scholar
  9. 9.
    Davison, P.; Karasek, M. A. Human dermal microvascular endothelial cells in vitro: effect of cyclic AMP on cellular morphology and proliferation rate. J. Cell Physiol. 106:253–258; 1981.PubMedCrossRefGoogle Scholar
  10. 10.
    Hawley-Nelson, P.; Sullivan, J. E.; Kung, M., et al. Optimized conditions for the growth of human epidermal cells in culture. J. Invest. Dermatol. 75:176–182; 1980.PubMedCrossRefGoogle Scholar
  11. 11.
    Hewett, P. W.; Murray, J. C. Human microvessel endothelial cells: isolation, culture and characterization. In Vitro Cell. Dev. Biol.:823–830; 1993.Google Scholar
  12. 12.
    Hewett, P. W.; Murray, J. C. Immunomagnetic purification of human microvessel endothelial cells using dynabeads coated with monoclonal antibodies to PECAM-1. Eur. J. Cell Biol. 62:451–454; 1993.PubMedGoogle Scholar
  13. 13.
    Hewett, P. W.; Murray, J. C.; Price, E. A., et al. Isolation and characterization of microvessel endothelial cells from human mammary adipose tissue. In Vitro Cell. Dev. Biol. 29A:325–331; 1993.CrossRefGoogle Scholar
  14. 14.
    Holthöfer, H.; Virtanen, I.; Kariniemi, A. L., et al.Ulex europaeus I lectin as a marker for vascular endothelium in human tissues. Lab. Invest. 47:60–66; 1982.PubMedGoogle Scholar
  15. 15.
    Hormia, M.; Lehto, V. P.; Virtanen, I. Identification of UEA-1 binding surface glycoproteins on cultured human endothelial cells. Cell Biol. Int. Rep. 7:467–475; 1983.PubMedCrossRefGoogle Scholar
  16. 16.
    Jackson, C. J.; Garbett, P. K.; Nissen, B., et al. Binding of human endothelium toUlex europeus I-coated Dynabeads: application to the isolation of microvascular endothelium. J. Cell Sci. 96:257–262; 1990.PubMedGoogle Scholar
  17. 17.
    Johnson, E. W.; Meunier, S. F.; Roy, C. J., et al. Serial cultivation of normal human keratinocytes: a defined system for studying the regulation of growth and differentiation. In Vitro Cell. Dev. Biol. 28A:429–435; 1992.PubMedCrossRefGoogle Scholar
  18. 18.
    Jones, G. E. Establishment, maintenance and cloning of human primary cell strains. In: Walker, J. M., ed. Methods in molecular biology: animal cell culture. Vol. 5. Totowa, NJ: Humana Press; 1990:13–23.CrossRefGoogle Scholar
  19. 19.
    Karasek, M. A. Cell culture of human skin epidermal cells. In: Goldsmith, L. A., ed. Biochemistry and physiology of the skin. New York: Oxford University Press; 1983:230–240.Google Scholar
  20. 20.
    Karasek, M. A. Microvascular endothelial cell culture. J. Invest. Dermatol. 93:33–38; 1989.CrossRefGoogle Scholar
  21. 21.
    Kramer, R. H.; Karasek, M. A.; Bensch, K. G. Isolation and characterization of human vascular endothelial cells with application to studies of the subendothelial matrix. In: Pretlow, T. P.; Pretlow, T. G., eds. Cell separation: methods and selected applications. Vol. 5. San Diego, CA: Academic Press; 1987:1–27.Google Scholar
  22. 22.
    Kumar, S.; West, D. C.; Ager, M. Heterogeneity in endothelial cells from large vessels and microvessels. Differentiation 36:57–70; 1987.PubMedCrossRefGoogle Scholar
  23. 23.
    Lipton, B. H.; Bensch, K. G.; Karasek, M. A. Microvessel endothelial cell transdifferentiation: phenotypic characterization. Differentiation 46:117–133; 1991.PubMedCrossRefGoogle Scholar
  24. 24.
    Liu, S. C.; Karasek, M. A. Isolation and growth of adult human epidermal keratinocytes in cell culture. J. Invest. Dermatol. 71:157–162; 1978.PubMedCrossRefGoogle Scholar
  25. 25.
    Maciag, T.; Nemore, R. E.; Weinstein, R., et al. An endocrine approach to the control of epidermal growth: serum-free cultivation of human keratinocytes. Science 211:1452–1453; 1981.PubMedCrossRefGoogle Scholar
  26. 26.
    Marks, R. M.; Czerniecki, M.; Penny, R. Human dermal microvascular endothelial cells: an improved method for tissue culture and a description of some singular properties in culture. In Vitro Cell. Dev. Biol. 21:627–635; 1985.PubMedCrossRefGoogle Scholar
  27. 27.
    McAuslan, B. R.; Hannan, G. N.; Reilly, W. Characterization of an endothelial cell proliferation factor from cultured 3T3 cells. Exp. Cell Res. 128:95–101; 1980.PubMedCrossRefGoogle Scholar
  28. 28.
    Moerman, E. J.; Goldstein, S. Culture of human fibroblasts. In: Clarke, W. L.; Larner, J.; Pohl, S., eds. Methods in diabetes research. Vol. II. New York: John Wiley & Sons; 1986:283–312.Google Scholar
  29. 29.
    Normand, J.; Karasek, M. A. Micromethod for the isolation of keratinocytes, endothelial cells and fibroblasts from a single punch biopsy of human skin. Clin. Research. 42:11A; 1994 (abstract).Google Scholar
  30. 30.
    Page, C.; Rose, M.; Yacoub, M., et al. Antigenic heterogeneity of vascular endothelium. Am. J. Pathol. 141:673–683; 1992.PubMedGoogle Scholar
  31. 31.
    Rheinwald, J. G.; Green, H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331–344; 1975.PubMedCrossRefGoogle Scholar
  32. 32.
    Sherer, G. K.; Fitzharris, T. P.; Faulk, W. P., et al. Cultivation of microvascular endothelial cells from human preputial skin. In Vitro 16:675–684; 1980.PubMedCrossRefGoogle Scholar
  33. 33.
    Thilo, D. G. S.; Müller-Küsel, S.; Heinrich, D., et al. Isolation of human venous endothelial cells by different proteases. Artery 8:259–266; 1980.PubMedGoogle Scholar
  34. 34.
    Tsao, M. C.; Walthall, B. J.; Ham, R. G. Clonal growth of normal human epidermal keratinocytes in a defined medium. J. Cell. Physiol. 110:219–229; 1982.PubMedCrossRefGoogle Scholar
  35. 35.
    Tuder, R. M.; Karasek, M. A.; Bensch, K. G. Cyclic adenosine monophosphate levels and the function of skin microvascular endothelial cells. J. Cell. Physiol. 142:272–283; 1990.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 1995

Authors and Affiliations

  • J. Normand
    • 1
  • M. A. Karasek
    • 1
  1. 1.Department of DermatologyStanford University School of MedicineStanford

Personalised recommendations