Immortalization of human mammary epithelial cells by SV40 large T-antigen involves a two step mechanism

  • Brigitte A. Van Der Haegen
  • Jerry W. Shay
Letter To The Editor


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allsop, R. C.; Vaziri, H.; Patterson, C., et al. Telomere length predicts replicative capacity of human fibroblast. Proc. Natl. Acad. Sci. USA 89:10114–10118; 1992.CrossRefGoogle Scholar
  2. 2.
    Band, V.; De Caprio, J. A.; Delmolino, L., et al. Loss of p53 protein in human papillomavirus type 16 E6-immortalized human mammary epithelial cells. J. Virology 65:6671–6676; 1991.PubMedGoogle Scholar
  3. 3.
    Bartek, J.; Taylor-Papadimitriou, J.; Miller, N., et al. Patterns of expression of keratin 19 as detected with monoclonal antibodies in human breast tissues and tumours. Int. J. Cancer 36:299–306; 1985.PubMedGoogle Scholar
  4. 4.
    Blackburn, E. H. Telomerase. Annu. Rev. Biochem. 61:113–129; 1992.PubMedCrossRefGoogle Scholar
  5. 5.
    Gendler, S.; Taylor-Papadimitriou, J.; Duhig, T., et al. A highly immunogenic region of a human polymorphic epithelial mucin expressed by carcinomas is made up of tandem repeats. J. Biol. Chem. 263:12820–12823; 1988.PubMedGoogle Scholar
  6. 6.
    Greider, C. W. Telomeres, telomerase and senescence. Bioessay 12:363–369; 1990.CrossRefGoogle Scholar
  7. 7.
    Hammond, S. L.; Ham, R. G.; Stampfer, M. R. Serum-free growth of human mammary epithelial cells: rapid clonal growth in defined medium and extended serial passage with pituitary extract. Proc. Natl. Acad. Sci. USA 81:5435–5439; 1984.PubMedCrossRefGoogle Scholar
  8. 8.
    Harley, C. B.; Futcher, A. B.; Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460; 1990.PubMedCrossRefGoogle Scholar
  9. 9.
    Harley, C. B. Telomere loss: the mitotic clock or genetic time bomb. Mut. Res. 256:271–282; 1991.Google Scholar
  10. 10.
    Hastie, N. D.; Dempster, M.; Dunlop, M. G., et al. Telomere reduction in human colorectal carcinoma and with ageing. Nature 346:866–868; 1990.PubMedCrossRefGoogle Scholar
  11. 11.
    Hayflick, L.; Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25:585–621; 1961.CrossRefGoogle Scholar
  12. 12.
    Morin, G. B. The human telomere terminal transferase is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59:521–529; 1989.PubMedCrossRefGoogle Scholar
  13. 13.
    Kipling, D.; Cooke, H. J. Beginning or end? Telomere structure, genetics and biology. Human Mol. Gen. 1:3–6; 1992.CrossRefGoogle Scholar
  14. 14.
    Pollock, R. E. Evaluation and treatment of soft-tissue sarcoma. The Cancer Bulletin 44:268–274; 1992.Google Scholar
  15. 15.
    Shay, J. W.; Wright, W. E. Quantitation of the frequency of immortalization of normal diploid fibroblasts by SV40 large T-antigen. Exp. Cell Res. 184:109–118; 1989.PubMedCrossRefGoogle Scholar
  16. 16.
    Shay, J. W.; Wright, W. E.; Werbin, H. Defining the molecular mechanisms of human cell immortalization. Biochimica et Biophysica Acta 1072:1–7; 1991.PubMedGoogle Scholar
  17. 17.
    Shay, J. W.; Pereira-Smith, O. M.; Wright, W. E. A role for both Rb and p53 in the regulation of human cellular senescence. Exper. Cell Res. 196:33–39; 1991.CrossRefGoogle Scholar
  18. 18.
    Shay, J. W.; Wright, W. E.; Braiskyte, D., et al. E6 of human papillomavirus 16 can overcome the M1 stage of immortalization in human mammary epithelial cells but not human fibroblasts. Oncogene. In press; 1993.Google Scholar
  19. 19.
    Southern, P. J.; Berg, P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Mol. Appl. Gen. 1:327–341; 1980.Google Scholar
  20. 20.
    Stampfer, M. R.; Hallowes, R. C.; Hackett, A. J. Growth of normal human mammary cells in culture. In Vitro 16:415–425; 1980.PubMedCrossRefGoogle Scholar
  21. 21.
    Stein, G. H. SV40-transformed human fibroblasts: evidence for cellular aging in precrisis cells. J. Cell Physiol. 125:36–44; 1985.PubMedCrossRefGoogle Scholar
  22. 22.
    Taylor-Papadimitriou, J.; Glendler, S. J. Molecular aspects of mucins. Cancer Rev. 11:11–24; 1989.Google Scholar
  23. 23.
    Vogelstein, B.; Fearon, E. R.; Baker, S. J., et al. In: Cavenee, N.; Hastie, N.; Stanbridge, E., eds. Current communications in molecular biology, recessive oncogenes and tumor suppression. Cold Spring Harbor Laboratory Press; 1978:73–80.Google Scholar
  24. 24.
    Wright, W. E.; Pereira-Smith, O. M.; Shay, J. W. Reversible cellular senescence: a two-stage model for the immortalization of normal human diploid fibroblasts. Mol. Cell. Biol. 9:3088–3092; 1989.PubMedGoogle Scholar
  25. 25.
    Wright, W. E.; Shay, J. W. Telomere positional effects and the regulation of cellular senescence. Trends in Gen. 8:193–197; 1992.CrossRefGoogle Scholar

Copyright information

© Tissue Culture Association 1993

Authors and Affiliations

  • Brigitte A. Van Der Haegen
    • 1
  • Jerry W. Shay
    • 1
  1. 1.Department of Cell Biology and NeurosciencesThe University of Texas Southwestern Medical Center at DallasDallas

Personalised recommendations