Advertisement

Theoretical and Mathematical Physics

, Volume 112, Issue 2, pp 1043–1055 | Cite as

Method of resurgent analysis in atomic collision theory

  • B. Yu. Sternin
  • V. E. Shatalov
Article
  • 37 Downloads

Abstract

We consider the atomic collision problem in the adiabatic approximation. We show that the transition probabilities can be evaluated in this approximation using the tools of resurgent analysis. We suggest a computational algorithm for the transition probabilities and give the mathematical foundation of this algorithm. The analysis is carried out using the example of the two-level Landau-Zener model.

Keywords

Asymptotic Expansion Riemann Surface Singularity Point Integration Contour Adiabatic Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. A. Soloviev,Usp. Fiz. Nauk,157, 437 (1989).Google Scholar
  2. 2.
    B. Sternin and V. Shatalov, “Collision problem in atomic physics and resurgent analysis,” Preprint No. NI 94047, Isaac Newton Inst. for Math. Sci., Cambridge (1995).Google Scholar
  3. 3.
    B. Sternin and V. Shatalov, “Theory of atomic collisions and resurgent analysis,” MPI/95-68, Max-Planck-Institut für Mathematik, Bonn (1995).Google Scholar
  4. 4.
    M. Born and V. Fock,Z. Phys.,51, 165 (1928).CrossRefGoogle Scholar
  5. 5.
    B. Sternin and V. Shatalov,Borel-Laplace Transform and Asymptotic Theory, CRC-Press, Boca Raton, Florida (1996).zbMATHGoogle Scholar
  6. 6.
    L. D. Landau,Phys. Z. der Sovjetunion,1, 88 (1932).zbMATHGoogle Scholar
  7. 7.
    C. Zener,Proc. R. Soc. A,137, 696 (1932).zbMATHADSGoogle Scholar
  8. 8.
    B. Candelpergher, J. C. Nosmas, and F. Pham,Approache de la Résurgence, Hermann, Paris (1993).Google Scholar
  9. 9.
    B. Yu. Sternin and V. E. Shatalov,Math. Notes,49, 267 (1991).MathSciNetGoogle Scholar
  10. 10.
    B. Sternin and V. Shatalov,Differential Equations on Complex Manifolds, Kluwer, Dordrecht (1994).zbMATHGoogle Scholar
  11. 11.
    B. Sternin and V. Shatalov, “Complex rays method and resurgent analysis,” Preprint No. NI 94046, Isaac Newton Inst. for Math. Sci., Cambridge (1995).Google Scholar
  12. 12.
    B. Sternin and V. Shatalov, “Does one need resurgent equations for exact semi-classical asymptotics?” MPI/95-89, Max-Planck-Institut für Mathematik, Bonn (1995).Google Scholar
  13. 13.
    E. Delabaere, “Introduction to the Écalle theory,” in:London Mathematical Society Lecture Note Series (E. Tournier, ed.), Vol. 193,Computer Algebra and Differential Equations, Cambridge Univ., Cambridge (1994), p. 59.Google Scholar
  14. 14.
    L. D. Landau and E. M. Lifshitz,Quantum Mechanics. Non-Relativistic Theory, Pergamon, Oxford (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • B. Yu. Sternin
    • 1
  • V. E. Shatalov
    • 2
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Moscow Technical University for Electronics and MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations