Advertisement

Theoretical and Mathematical Physics

, Volume 112, Issue 2, pp 935–948 | Cite as

Generalized legendre transformations

  • V. E. Adler
  • A. B. Shabat
Article

Abstract

A general theory of Toda chains is presented. The chains are treated as Lagrange dynamic systems with one continuous and one discrete time. The theory is based on the fact that the chains are invariant with respect to transformations that are analogous to the Legendre transformations in classical mechanics.

Keywords

Poisson Bracket Legendre Transformation Generalize Momentum Toda Chain Variational Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. E. Adler and A. B. Shabat,Theor. Math. Phys.,111, 647 (1997).zbMATHMathSciNetGoogle Scholar
  2. 2.
    D. Levi,J. Phys. A: Math. Gen.,14, 1083 (1981).CrossRefADSGoogle Scholar
  3. 3.
    A. B. Shabat and R. I. Yamilov,Algebra Anal.,2, No. 2, 183 (1990).MathSciNetGoogle Scholar
  4. 4.
    V. E. Adler, R. I. Yamilov,J. Phys. A: Math. Gen.,27, 477 (1994).zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    M. Toda,Theory of Nonlinear Lattices, Springer, Berlin-Heidelberg-New York (1981).zbMATHGoogle Scholar
  6. 6.
    R. I. Yamilov,Usp. Mat. Nauk,38, No. 6, 155 (1983).Google Scholar
  7. 7.
    R. I. Yamilov, “Classification of Toda type scalar lattices,” in:Nonlinear Evolution Equations and Dynamical Systems, World Scientific, Singapore (1993), pp. 423–431.Google Scholar
  8. 8.
    A. P. Veselov and A. B. Shabat,Funct. Anal. Appl.,27, 81 (1993).zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    J. Weiss,J. Math. Phys.,27, 2647 (1986).zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    P. Olver,Applications of Lie Groups to Differential Equations, Springer, New York-Berlin-Heidelberg-Tokyo (1986).zbMATHGoogle Scholar
  11. 11.
    A. V. Mikhailov, A. B. Shabat, and R. I. Yamilov,Russian Math. Surveys,42, No. 4, 1 (1987).CrossRefMathSciNetGoogle Scholar
  12. 12.
    W. Oevel, B. Fuchssteiner, H. Zhang, and O. Ragnisco,J. Math. Phys.,30, 2664 (1989).zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • V. E. Adler
    • 1
  • A. B. Shabat
    • 2
  1. 1.Institute of Mathematics, Ufa Scientific CenterRussian Academy of SciencesUfaRussia
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations