Dexamethasone selectively regulates the activity of enzymatic markers of cerebral endothelial cell lines

  • L. Juillerat-Jeanneret
  • A. Aguzzi
  • O. D. Wiestler
  • P. Darekar
  • R.-C. Janzer
Regular Papers


Two endothelial cell lines were derived from grafts of the central nervous system using retrovirus mediated gene transfer to introduce the polyoma middle-T oncogene into fetal rat brain endothelial cells and transplantation of these cells into adult rat brain. In this report, we further characterize these cells and the effect of dexamethasone on the expression of specific enzymatic markers. These cells take up acetylated low density lipoprotein, leucine, and glucose, and express Factor VIII-related antigen, angiotensin converting enzyme, alkaline phosphatase, gamma-glutamyltranspeptidase, and as yet undescribed aminopeptidase A and B-like enzymes. When grown on semi-permeable membranes, these transformed cells do not spontaneously retain small hydrophilic molecules. In culture, one of the lines (EC 193) forms a confluent monolayer of spindle-shaped cells homogenously expressing gamma-glutamyltranspeptidase at a level comparable to primary cells. The other cell line (EC 219) grows as clusters of elongated cells, and gamma-glutamyltranspeptidase activity is expressed mainly in cells forming the clusters. This clustered pattern changes to a confluent one after culture on type-I collagen. Dexamethasone increases angiotensin-converting enzyme activity, and decreases the expression of gamma-glutamyltranspeptidase and aminopeptidase A, whereas the aminopeptidase B activity is little modified. Inhibition of aminopeptidase A activity by amastatin, potentiates angiotensin II effects on DNA synthesis. These results indicate that retrovirally transformed brain endothelial cells are a useful model for studying the blood-brain barrier in vitro and that dexamethasone, an agent with the potential to reduce brain edema, directly affects some blood-brain barrier properties in these endothelial cell lines.

Key words

endothelial cells blood-brain barrier polyoma middle-T oncogene aminopeptidase dexamethasone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aguzzi, A.; Kleihues, P.; Heckl, K., et al. Cell type-specific tumor induction in neural transplants by retrovirus-mediated oncogene transfer. Oncogene 6:113–118; 1991.PubMedGoogle Scholar
  2. 2.
    Albelda, S. M.; Sampson, P. M.; Haselton, F. R., et al. Permeability characteristics of cultured endothelial cell monolayers. Am. J. Physiol. 64:308–322; 1988.Google Scholar
  3. 3.
    Arthur, F. E.; Shivers, R. R.; Bowman, P. D. Astrocyte-mediated induction of tight junctions in brain capillary endothelium. Dev. Brain Res. 36:155–159; 1987.CrossRefGoogle Scholar
  4. 4.
    Baranczyk-Kuzma, A.; Audus, K. L. Characteristics of aminopeptidase activity from bovine brain microvessel endothelium. J. Cereb. Blood Flow Metab. 7:801–805; 1987.PubMedGoogle Scholar
  5. 5.
    Bauer, H. C.; Tontsch, U.; Amberger, A., et al. Gamma-glutamyltranspeptidase (gGTP) and Na+K+ATPase activities in different subpopulations of cloned cerebral endothelial cells: response to glial stimulation. Biochem. Biophys. Res. Commun. 168:358–363; 1990.CrossRefPubMedGoogle Scholar
  6. 6.
    Bautch, V. L.; Toda, S.; Hassel, J. A., et al. Endothelial cell tumors develop in transgenic mice carrying polyoma virus middle T oncogene. Cell 51:529–538; 1987.CrossRefPubMedGoogle Scholar
  7. 7.
    Brandi, M. L.; Ornberg, R. L.; Sakaguchi, K., et al. Establishment and characterisation of a clonal line of parathyroid endothelial cells. FASEB J. 4:3152–3158; 1990.PubMedGoogle Scholar
  8. 8.
    Boado, R. J.; Pardridge, W. M. The brain-type glucose transporter mRNA is specifically expressed at the blood-brain barrier. Biochem. Biophys. Res. Commun. 166:174–179; 1990.CrossRefPubMedGoogle Scholar
  9. 9.
    Butt, A. M.; Jones, H. C., Abbott, N. J. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J. Physiol. (Lond) 429:47–62; 1990.Google Scholar
  10. 10.
    Cancilla, P. A.; DeBault, L. E. Neutral aminoacids transport properties of cerebral endothelial cells in vitro. J. Neuropathol. Exp. Neurol. 42:191–199; 1983.PubMedGoogle Scholar
  11. 11.
    DeBault, L. E.; Cancilla, P. A. Gamma-glutamyl-transpeptidase in isolated brain endothelial cells: induction by glial cells in vitro. Science 207:653–655; 1980.CrossRefPubMedGoogle Scholar
  12. 12.
    DeBault, L. E.; Henriquez, E.; Hart, M. N., et al. Cerebral microvessels and derived cells in tissue culture: II. Establishment, identification and preliminary characterisation of an endothelial cell line. In Vitro 17:480–494; 1981.PubMedGoogle Scholar
  13. 13.
    Dehouck, M. P.; Méresse, S.; Delorme, P., et al. An easier, reproducible, and mass-production method to study the blood-brain barrier in vitro. J. Neurochem. 54:1798–1801; 1990.CrossRefPubMedGoogle Scholar
  14. 14.
    Del Vecchio, P. J.; Smith, J. R. Expression of angiotensin converting enzyme activity in cultured pulmonary artery endothelial cells. J. Cell. Physiol. 108:337–345; 1981.CrossRefPubMedGoogle Scholar
  15. 15.
    Fauth, C.; Rossier, B.; Roch-Ramel, F. Transport of tetraetylammonium by a kidney epithelial cell line (LLC-PK1). Am. J. Physiol. 254:F351-F357; 1988.PubMedGoogle Scholar
  16. 16.
    Fyhrquist, F.; Grönhagen-Riska, C.; Hortling, L., et al. Regulation of angiotensin converting enzyme. J. Hypertens 1:25–30; 1983.Google Scholar
  17. 17.
    Goldstein, G. W. Endothelial cell-astrocyte interactions. A cellular model of the blood-brain-barrier. Ann. NY Acad. Sci. 529:31–39; 1988.CrossRefPubMedGoogle Scholar
  18. 18.
    Guerin, C.; Laterra, J.; Hruban, R. H., et al. The glucose transporter and blood-brain barrier of human brain tumors. Ann. Neurol. 28:758–765; 1990.CrossRefPubMedGoogle Scholar
  19. 19.
    Horio, M.; Chin, K. V.; Currier, S. J., et al. Transepithelial transport of drugs by the multidrug transporter in cultured Madin-Darby canine kidney cell epithelia. J. Biol. Chem. 264:14880–14884; 1989.PubMedGoogle Scholar
  20. 20.
    Janzer, R. C.; Raff, M. C. Astrocytes induce blood-brain-barrier properties in endothelial cells. Nature 325:253–257; 1987.CrossRefPubMedGoogle Scholar
  21. 21.
    Jefferies, W. A.; Brandon, M. R.; Hunt, S. V., et al. Transferrin receptor on endothelium of rat brain capillaries. Nature 312:162–163; 1984.CrossRefPubMedGoogle Scholar
  22. 22.
    Juillerat, L.; Nussberger, J.; Ménard, J., et al. Determinants of angiotensin II generation during converting enzyme inhibition. Hypertension 16:564–572; 1990.PubMedGoogle Scholar
  23. 23.
    Krulewitz, A. H.; Baur, W. E.; Fanburg, B. L. Hormonal influence on endothelial cell angiotensin coverting enzyme. Am. J. Physiol. 247:C163-C168; 1984.PubMedGoogle Scholar
  24. 24.
    Maxwell, K.; Berliner, J. A.; Cancilla, P. A. Stimulation of glucose analogue uptake by cerebral microvessel endothelial cells by a product released by astrocytes. J. Neuropathol. Exp. Neurol. 48:69–80; 1989.PubMedGoogle Scholar
  25. 25.
    Milton, S. G.; Knutson, V. P. Comparison of the function of the tight junctions of endothelial cells and epithelial cells in regulating the movement of electrolytes and macromolecules across the cell monolayer. J. Cell Physiol. 144:498–504; 1990.CrossRefPubMedGoogle Scholar
  26. 26.
    Morse, L. S.; SiDikaro, Y. Isolation and characterisation of bovine choroid microvessel endothelium and pericytes in culture. Current Eye Res. 9:631–642; 1990.Google Scholar
  27. 27.
    Obeso, J.; Weber, J.; Auerbach, R. A hemangioendothelioma-derived cell line: its use as a model for the study of endothelial cell biology. Lab. Invest. 63:259–269; 1990.PubMedGoogle Scholar
  28. 28.
    Paolicchi, A.; Chieli, E.; Tongiani, R. Dexamethasone induction of gamma-glutamyltransferase in primary cultures of hepatocytes is enhanced by metyrapone. Res. Commun. Chem. Pathol. Pharmacol. 70:49–60; 1990.PubMedGoogle Scholar
  29. 29.
    Pardridge, W. M.; Boado, R. J.; Farrell, C. R. Brain-type glucose transporter (GLUT-1) is selectively localized to the blood-brain barrier. Studies with quantitative Western blotting and in situ hybridization. J. Biol. Chem. 265:18035–18040; 1990.PubMedGoogle Scholar
  30. 30.
    Rutten, M. J.; Hoover, R. L.; Karnovski, M. J. Electrical resistance and macromolecular permeability of brain endothelial monolayer culture. Brain Res. 425:301–310; 1987.CrossRefPubMedGoogle Scholar
  31. 31.
    Schürer, L.; Temesvari, P.; Wahl, M., et al. Blood-brain-barrier permeability and vascular reactivity to bradykinin after pretreatment with dexamethasone. Acta Neuropathol. 77:576–581; 1989.CrossRefPubMedGoogle Scholar
  32. 32.
    Stolz, D. B.; Jacobsen, B. S. Macro- and microvascular endothelial cells in vitro: maintenance of biochemical heterogeneity despite loss of ultrastructural characteristics. In Vitro Cell. Dev. Biol. 27A:169–182; 1991.PubMedGoogle Scholar
  33. 33.
    Tate, S. T.; Meister, A. Gamma-glutamyltranspeptidase from kidney. Methods Enzymol. 113:400–419; 1985.PubMedCrossRefGoogle Scholar
  34. 34.
    Tomlinson, A.; Van Vlijmen, H.; Loesch, A., et al. An immunohistochemical study of endothelial cell heterogeneity in the rat: observations in “en face” Häutchen preparations. Cell Tissue Res. 263:173–181; 1991.CrossRefPubMedGoogle Scholar
  35. 35.
    Voyta, J. C.; Via, D. P.; Butterfield, C. E., et al. Identification and isolation of endothelial cells based on their increased uptake of acetylated low density lipoprotein. J. Cell Biol. 99:2034–2040; 1984.CrossRefPubMedGoogle Scholar
  36. 36.
    Williams, L.; Courtneidge, S. A.; Wagner, E. F. Embryonic lethalities and endothelial tumours in chimeric mice expressing polyoma virus middle-T oncogene. Cell 52:121–131; 1988.CrossRefPubMedGoogle Scholar
  37. 37.
    Zoellner, H. F. A.; Hunter, N. Histochemical identification of the vascular endothelial isoenzyme of alkaline phosphatase. J. Histochem. Cytochem. 37:1893–1898; 1989.PubMedGoogle Scholar

Copyright information

© Tissue Culture Association 1992

Authors and Affiliations

  • L. Juillerat-Jeanneret
    • 1
  • A. Aguzzi
    • 2
  • O. D. Wiestler
    • 3
  • P. Darekar
    • 1
  • R.-C. Janzer
    • 1
  1. 1.Division of Neuropathology, Institute of PathologyUniversity of LausanneLausanneSwitzerland
  2. 2.Institute of Molecular PathologyViennaAustria
  3. 3.Division of Neuropathology, Institute of PathologyUniversity of ZürichSwitzerland

Personalised recommendations