Theoretical and Mathematical Physics

, Volume 112, Issue 1, pp 791–826 | Cite as

On integrable systems and supersymmetric gauge theories

  • A. V. Marshakov


We discuss the properties ofN=2 supersymmetric gauge theories underlying the Seiberg-Witten hypothesis. We consider the main points of the theory that describes the finite-gap solutions to integrable equations in terms of complex curves and generating differentials. We clarify the invariant meaning of these definitions. This formalism is applied to the exact nonperturbative solutions found recently in theN=2 supersymmetric non-Abelian gauge theories. In the known cases, we compare this formalism with the results that can be obtained using standard quantum field-theory methods.


Modulus Space Riemann Surface Supersymmetric Gauge Theory Hyperelliptic Curve Toda Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Gorsky, I. Krichever, A. Marshakov, A. Mironov, and A. Morozov,Phys. Lett. B,355, 466 (1995); hep-th/9505035.zbMATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    E. Martinec and N. Warner, hep-th/9509161.Google Scholar
  3. 3.
    T. Nakatsu and K. Takasaki, hep-th/9509162.Google Scholar
  4. 4.
    R. Donagi and E. Witten, hep-th/9510101.Google Scholar
  5. 5.
    E. Martinec, hep-th/9510204.Google Scholar
  6. 6.
    A. Gorsky and A. Marshakov, hep-th/9510224;Phys. Lett. B,375, 127 (1996).zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    E. Martinec and N. Warner, hep-th/9511052.Google Scholar
  8. 8.
    H. Itoyama and A. Morozov, hep-th/9511126; hep-th/9512161; hep-th/9601168.Google Scholar
  9. 9.
    A. Marshakov,Mod. Phys. Lett. A,11, 1169 (1996); hep-th/9602005.zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    C. Ann and S. Nam, hep-th/9603028.Google Scholar
  11. 11.
    A. Gorsky, A. Marshakov, A. Mironov, and A. Morozov, hep-th/9603140;Phys. Lett. B,380, 75 (1996).CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    A. Gorsky, A. Marshakov, A. Mironov, and A. Morozov, hep-th/9604078 in:Problems in Modern Theoretical Physics, Dubna (1996), pp. 44–62.Google Scholar
  13. 13.
    I. Krichever and D. Phong, hep-th/9604199.Google Scholar
  14. 14.
    A. Marshakov, “From nonperturbative supersymmetric quantum gauge theories to integrable systems,” preprint FIAN/TD-11/96, ITEP/TH-23/96, hep-th/9607159.Google Scholar
  15. 15.
    A. Marshakov, “Nonperturbative quantum theories and integrable equations,” preprint FIAN/TD-16/96, ITEP/TH-47/96, hep-th/9610242.Google Scholar
  16. 16.
    A. Marshakov, A. Mironov, and A. Morozov, “WDVV-like equations inN=2 supersymmetric Yang-Mills theory,” preprint FIAN/TD-10/96, ITEP/TH-22/96, hep-th/9607109, to appear in Phys. Lett. B.Google Scholar
  17. 17.
    A. Marshakov, A. Mironov, and A. Morozov, preprint FIAN/TD-15/96, ITEP/TH-46/96, hep-th/9701123.Google Scholar
  18. 18.
    A. Marshakov, A. Mironov, A. Morozov, preprint FIAN/TD-01/97, ITEP/TH-02/97, hep-th/9701014.Google Scholar
  19. 19.
    N. Nekrasov, hep-th/9609219.Google Scholar
  20. 20.
    N. Seiberg and E. Witten, hep-th/9407087Nucl. Phys. B,426, 19 (1994).zbMATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    N. Seiberg and E. Witten, hep-th/9408099Nucl. Phys. B,431, 484 (1994).zbMATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    L. D. Faddeev and L. A. Takhtadzhyan,Hamiltonian Approach in the Theory of Solitons, Springer, Berlin-Heidelberg-New York (1987).Google Scholar
  23. 23.
    A. Klemm, W. Lerche, S. Theisen, and S. Yankielowicz, hep-th/9411048Phys. Lett. B,344, 169 (1995);CrossRefADSMathSciNetGoogle Scholar
  24. 23a.
    P. Argyres and A. Faraggi, hep-th/9411057Phys. Rev. Lett.,73, 3931 (1995).CrossRefADSGoogle Scholar
  25. 24.
    A. Hanany and Y. Oz, hep-th/9505075; P. Argyres, D. Plesser, and A. Shapere, hep-th/9505100; J. Minahan and D. Nemeschansky, hep-th/9507032; P. Argyres and A. Shapere, hep-th/9509175; A. Hanany, hep-th/9509176.Google Scholar
  26. 25.
    I. Krichever,Func. An. Appl.,11, 15 (1977);Usp. Mat. Nauk,32, 180 (1977).zbMATHGoogle Scholar
  27. 26.
    S. Novikov, S. Manakov, L. Pitaevskii (Pitaevsky), and V. Zakharov,Theory of Solitons, Nauka, Moscow (1980).zbMATHGoogle Scholar
  28. 27.
    B. Dubrovin,Usp. Mat. Nauk,36, No. 2, 12 (1981).MathSciNetGoogle Scholar
  29. 28.
    B. Dubrovin, I. Krichever, and S. Novikov, “Integrable systems-I,” in:Modern Problems in Mathematics, Dynamical Systems [in Russian], Vol. 4, VINITI (1985), p. 179.Google Scholar
  30. 29.
    K. Ueno and K. Takasaki, “Toda lattice hierarchy,”Adv. Studies Pure Math.,4, 1 (1984).MathSciNetGoogle Scholar
  31. 30.
    M. Sato,RIMS Kokyuroku,439, 30 (1981); M. Sato and Y. Sato, in:Lect. Notes. Num. Appl. Anal., Vol. 5 (1982), p. 259; in:Nonlinear Partial Differential Equations in Applied Science, North Holland, Amsterdam, New York (1983), pp. 259–271.Google Scholar
  32. 31.
    G. Segal and G. Wilson, “Loop groups and KdV-type equations,” in:Publ. I.H.E.S., Vol. 61 (1985), p. 1.Google Scholar
  33. 32.
    S. Kharchev and A. Marshakov, in:String Theory, Quantum Gravity, and the Unification of Fundamental Interactions, World Scientific (1993), pp. 331–346.Google Scholar
  34. 33.
    S. Kharchev and A. Marshakov,Int. J. Mod. Phys. A,10, 1219 (1995).zbMATHCrossRefADSMathSciNetGoogle Scholar
  35. 34.
    E. Witten,Surv. Diff. Geom.,1, 243 (1991);MathSciNetGoogle Scholar
  36. 34a.
    R. Dijkgraaf, E. Verlinde, and H. Verlinde,Nucl. Phys. B,352, 59 (1991).CrossRefADSMathSciNetGoogle Scholar
  37. 35.
    I. Krichever, Preprint LPTENS-92-18Commun. Pure Appl. Math.,47, 437 (1994).zbMATHCrossRefMathSciNetGoogle Scholar
  38. 36.
    B. Dubrovin, hep-th/9407018Nucl. Phys B,379, 627 (1992).CrossRefADSMathSciNetGoogle Scholar
  39. 37.
    N. Hitchin,Duke Math. J.,54, 91 (1987).zbMATHCrossRefMathSciNetGoogle Scholar
  40. 38.
    I. Krichever, Appendix to: B. DubrovinUsp. Mat. Nauk,36, No. 2, 12 (1981).MathSciNetGoogle Scholar
  41. 39.
    E. Sklyanin,J. Sov. Math.,47, 2473 (1989);Func. Anal. Appl.,16, 27 (1982);17, 34 (1983).zbMATHCrossRefMathSciNetGoogle Scholar
  42. 40.
    I. Krichever,Func. Anal. Appl.,14, 282 (1980).CrossRefGoogle Scholar
  43. 41.
    E. Sklyanin,Alg. Anal.,6, 227 (1994);zbMATHMathSciNetGoogle Scholar
  44. 41a.
    H. Braden and T. Suzuki,Lett. Math. Phys.,30, 147 (1994); B. Enriquez and V. Rubtsov, alg-geom/9503010; N. Nekrasov, hep-th/9503157; G. Arutyunov and P. Medvedev, hep-th/9511070.zbMATHCrossRefMathSciNetGoogle Scholar
  45. 42.
    V. Inozemtsev,Commun. Math. Phys.,121, 629 (1989).zbMATHCrossRefADSMathSciNetGoogle Scholar
  46. 43.
    I. Krichever,Usp. Mat. Nauk,44, No. 2, 121 (1989).MathSciNetGoogle Scholar
  47. 44.
    I. Krichever,Func. Anal. Appl.,22, 37 (1988);Commun. Math. Phys.,143, 415 (1991).MathSciNetGoogle Scholar
  48. 45.
    B. Dubrovin and S. Novikov,Usp. Mat. Nauk,44, No. 6, 29 (1989).MathSciNetGoogle Scholar
  49. 46.
    A. Gurevich and L. Pitaevskii (Pitaevsky),JETP,65, 65 (1973); see also S. Novikov, S. Manakov, L. Pitaevskii (Pitaevsky), and V. Zakharov,Theory of Solitons,, Moscow (1980).Google Scholar
  50. 47.
    Yu. Manin, “Frobenius manifolds, quantum cohomology, and moduli spaces,” Preprint MPI (1996).Google Scholar
  51. 48.
    M. Kontsevich and Yu. Manin,Commun. Math. Phys.,164, 525 (1994).zbMATHCrossRefADSMathSciNetGoogle Scholar
  52. 49.
    E. Markman,Comp. Math.,93, 255 (1994); R. Donagi and E. Markman, “Cubics, integrable systems and Calabi-Yau threefolds,” preprint; “Spectral covers, algebraically and completely integrable Hamiltonian systems and moduli of bundles,” preprint.zbMATHMathSciNetGoogle Scholar
  53. 50.
    N. Seiberg and E. Witten, hep-th/9609219.Google Scholar
  54. 51.
    S. Ruijsenaars, “Finite-dimensional soliton systems,” in:Integrable and Super-Integrable Systems, World Scientific (1989).Google Scholar
  55. 52.
    A. Beilinson and Yu. Manin,Commun. Math. Phys.,107, 359 (1986).CrossRefADSMathSciNetGoogle Scholar
  56. 53.
    J. Fay, “Theta-functions on Riemann surfaces,” in:Lect. Notes Math., Vol. 352, Springer, N.Y. (973).Google Scholar
  57. 54.
    D. Mumford,Tata Lectures on Theta (1988).Google Scholar
  58. 55.
    A. Losev,Theor. Math. Phys.,95, 307 (1993);CrossRefMathSciNetGoogle Scholar
  59. 55a.
    A. Losev and I. Polyubin,Int. J. Mod. Phys. A,10, 416 (1995).CrossRefMathSciNetGoogle Scholar
  60. 56.
    W. Lerche, C. Vafa, and N. Warner,Nucl. Phys. B,324, 427 (1989).CrossRefADSMathSciNetGoogle Scholar
  61. 57.
    P. Griffits and J. Harris,Principles of Algebraic Geometry (1982).Google Scholar
  62. 58.
    N. Dorey, V. Khoze, and M. Mattis, hep-th/9607202; hep-th/9611016; E. D’Hoker, I. Krichever, and D. Phong, hep-th/9609041.Google Scholar
  63. 59.
    I. Krichever, hep-th/9611158.Google Scholar
  64. 60.
    J. Harvey and G. Moore, hep-th/9510182.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • A. V. Marshakov
    • 1
    • 2
  1. 1.Theory DepartmentLebedev Physics InstituteMoscowRussia
  2. 2.ITEPMoscowRussia

Personalised recommendations