Theoretical and Mathematical Physics

, Volume 111, Issue 3, pp 647–657 | Cite as

On a class of toda chains

  • V. E. Adler
  • A. B. Shabat
Article

Abstract

The main result of this paper is a list of integrable generalizations of the classical and relativistic Toda chains. This list includes three new types in addition to the well-known chains. Each of them defines a Bäcklund transformation for an NSE-type system. The classification is carried out with the help of a simple symmetry test.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. B. Shabat and R. I. Yamilov,Algebra Analiz,2, No. 2, 183 (1990).MathSciNetGoogle Scholar
  2. 2.
    A. N. Leznov, A. B. Shabat, and R. I. Yamilov,Phys. Lett. A,174, 397 (1993).CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    D. Levi,J. Phys. A: Math. Gen.,14, 1083 (1981).CrossRefADSGoogle Scholar
  4. 4.
    R. I. Yamilov,Usp. Mat. Nauk,38, No. 6, 155 (1983).Google Scholar
  5. 5.
    R. I. Yamilov, “Classification of Toda-type scalar lattices,” in:Nonlinear Evolution Equations and Dynamical Systems, World Scientific, Singapore (1993), pp. 423.Google Scholar
  6. 6.
    A. V. Mikhailov and A. B. Shabat,Theor. Math. Phys.,62, 107 (1985).CrossRefMathSciNetGoogle Scholar
  7. 7.
    A. V. Mikhailov, A. B. Shabat, and R. I. Yamilov,Commun. Math. Phys.,115, 1 (1988).CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    S. N. M. Ruijsenaars, “Relativistic Toda system,” Preprint, Stichting Center for Mathematics and Computer Sciences, Amsterdam (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • V. E. Adler
    • 1
  • A. B. Shabat
    • 2
  1. 1.Institute of Mathematics, Ufa Scientific CenterRussian Academy of SciencesUfaRussia
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations