A line of rat ovarian surface epithelium provides a continuous source of complex extracellular matrix

  • Patricia A. Kruk
  • Nelly Auersperg
Cellular Models

Summary

A spontaneously immortalized, yet non-tumorigenic rat ovarian surface epithelial (ROSE 199) cell line, deposits large amounts of extracellular matrix (ECM) in response to crowding. The characteristics and components of ROSE 199-derived cell-free ECM were compared after three different preparative techniques: treatment with 20 mM ammonium hydroxide, with 1% sodium deoxycholate, or by repeated freeze-thaws. The ECMs were analyzed by histochemistry, immunofluorescence, electron microscopy, and Western immunoblotting. Components of ROSE 199 ECM included laminin, fibronectin, and collagen types I and III. Even though ROSE 199 is an epithelial cell line, striated collagen fibers formed a major part of its matrix. Thus, ROSE 199 matrix consists of both basement membrane and stromal matrix components. This matrix supported the adhesion, spreading, and growth of several cell types without altering their morphology or growth pattern, and enhanced the attachment of some cell types that spread on plastic only with difficulty. Immunofluorescence, electron microscopy, and dry weight determinations indicated that a greater proportion of matrix was retained in preparations obtained by ammonium hydroxide or freeze thaw techniques than after sodium deoxycholate treatment. Ammonium hydroxide and freeze-thaw treated matrices were also superior to sodium deoxycholate preparations as evidenced by enhanced initial cellular adhesion and spreading compared to cells plated on plastic. Residual nuclear material did not seem to affect the biological activity of this matrix. ROSE 199 extracellular matrix provides a novel, complex substratum for cell culture and for studies of matrix functions and synthesis.

Key words

extracellular matrix ovarian surface epithelium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, A. T.; Auersperg, N. A cell line, ROSE 199, derived from normal rat ovarian surface epithelium. Exp. Cell Biol. 53:181–188; 1985.PubMedGoogle Scholar
  2. 2.
    Aggler, J. Three-dimensional organization of the extracellular matrix secreted by cultured rat smooth muscle cells. In Vitro Cell. Dev. Biol. 24:633–638; 1988.CrossRefGoogle Scholar
  3. 3.
    Auersperg, N.; Hollinshead, A. C.; Lee, O. B., et al. Detection of herpes simplex virus tumor-associated antigens in human cell lines after long-term cultivation. In: Schlessinger, D., ed. Microbiology. Washington, DC: A.S.M. Press; 1981:302–307.Google Scholar
  4. 4.
    Auersperg, N.; MacLaren, I. A.; Kruk, P. A. Ovarian surface epithelium: autonomous production of connective tissue-type extracellular matrix. Biol. Reprod. 44:717–724; 1991.PubMedCrossRefGoogle Scholar
  5. 5.
    Boyd, D.; Florent, G.; Chakrabarty, S., et al. Alterations of the biological characteristics of a colon carcinoma cell line by colon-derived substrata material. Cancer Res. 48:2825–2831; 1988.PubMedGoogle Scholar
  6. 6.
    Brauer, P. R.; Keller, J. M. Ultrastructure of a model basement membrane lacking type IV collagen. Anat. Rec. 223:376–383; 1989.PubMedCrossRefGoogle Scholar
  7. 7.
    Carley, W. W.; Milici, A. J.; Madri, J. A. Extracellular matrix specificity for the differentiation of capillary endothelial cells. Exp. Cell Res. 178:426–434; 1988.PubMedCrossRefGoogle Scholar
  8. 8.
    Carlson, E. C.; Kenney, M. C. Preparation and histoarchitecture of ultrastructurally pure glomerular basement membrane. Renal Physiol. 3:280–287; 1980.PubMedGoogle Scholar
  9. 9.
    Chang, S.-G.; Toth, K.; Black, J. D., et al. Growth of human renal cortical tissue on collagen gel. In Vitro Cell. Dev. Biol. 28A:128–135; 1992.PubMedGoogle Scholar
  10. 10.
    Crickard, K.; Crickard, U.; Yoonessi, M. Human ovarian carcinoma cells maintained on extracellular matrix versus plastic. Cancer Res. 43:2762–2767; 1983.PubMedGoogle Scholar
  11. 11.
    Gillet, W. Artefactual loss of human ovarian surface epithelium: potential clinical significance. Reprod. Fertil. Dev. 3:93–98; 1991.CrossRefGoogle Scholar
  12. 12.
    Gospodarowicz, D. Preparation of extracellular matrices produced by cultured bovine corneal endothelial cells and PF-HR-9 endodermal cells: their use in cell culture. In: Barnes, D. W.; Sirbaski, D. A.; Sato, G. H., eds. Methods for preparation of media, supplements, and substrata for serum-free animal cell culture. New York: Alan R. Liss; 1984:275–293.Google Scholar
  13. 13.
    Grinnell, F.; Fukamizu, F.; Pawelek, P., et al. Collagen processing, crosslinking, and fibril bundle assembly in matrix produced by fibroblasts in longterm cultures supplemented with ascorbic acid. Exp. Cell Res. 181:483–491; 1989.PubMedCrossRefGoogle Scholar
  14. 14.
    Hadley, M. A.; Byers, S. W.; Suarez-Quian, C. A., et al. Extracellular matrix regulates Sertoli cell differentiation, testicular cord formation, and germ cell development in vitro. J. Cell. Biol. 101:1511–1522; 1985.PubMedCrossRefGoogle Scholar
  15. 15.
    Hixon, D. C.; Ponce, M. D.; Allison, J. P., et al. Cell surface expression by adult rat hepatocytes of a non-collagen glycoprotein present in rat liver biomatrix. Exp. Cell Res. 152:402–424; 1984.CrossRefGoogle Scholar
  16. 16.
    Hornby, A. E.; Pan, J.; Auersperg, N. Intermediate filaments in rat ovarian surface epithelial cells: changes with neoplastic progression in culture. Biochem. Cell Biol. 70:16–25; 1992.PubMedCrossRefGoogle Scholar
  17. 17.
    Inoue, S.; Leblond, C. P.; Laurie, G. W. Ultrastructure of Reichert’s membrane, a multilayered basement membrane in the parietal wall of the rat yolk sac. J. Cell Biol. 97:1524–1537; 1983.PubMedCrossRefGoogle Scholar
  18. 18.
    Kleinman, H. K.; Cannon, F. B.; Laurie, G. W., et al. Biological activities of laminin. J. Cell. Biochem. 27:317–325; 1985.PubMedCrossRefGoogle Scholar
  19. 19.
    Kleinman, H. K.; McGarvey, M. L.; Hassell, J. R., et al. Basement membrane complexes with biological activity. Biochemistry 25:312–318; 1986.PubMedCrossRefGoogle Scholar
  20. 20.
    Kopf-Maier, P.; Zimmermann, B. Organoid reorganization of human tumors under in vitro conditions. Cell Tissue Res. 264:563–576; 1991.PubMedCrossRefGoogle Scholar
  21. 21.
    Kruk, P. A.; Auersperg, N. Human ovarian surface epithelial cells are capable of physically restructuring extracellular matrix. Am. J. Obstet. Gynecol. 167:1437–1443; 1992.PubMedGoogle Scholar
  22. 22.
    Laemmli, U. K. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685; 1970.PubMedCrossRefGoogle Scholar
  23. 23.
    Leighton, J.; Tchao, R.; Nichols, J. Radial gradient culture on the inner surface of collagen tubes: organoid growth of normal rat bladder and rat bladder cancer cell line NBT-II. In Vitro Cell. Dev. Biol. 21:713–715; 1985.PubMedCrossRefGoogle Scholar
  24. 24.
    Levine, A. E.; Black, B.; Brattain, M. G. Effects ofN,N-dimethylformamide and extracellular matrix on transforming growth factor-β binding to a human colon carcinoma cell line. J. Cell. Physiol. 138:459–466; 1989.PubMedCrossRefGoogle Scholar
  25. 25.
    Liotta, L. A.; Lee, C. W.; Morakis, D. J. New method for preparing large surfaces of intact human basement membrane for tumor invasion studies. Cancer Lett. 11:141–152; 1980.PubMedCrossRefGoogle Scholar
  26. 26.
    Maines-Bandiera, S. L.; Kruk, P. A.; Auersperg, N. SV40 transformed human ovarian surface epithelial cells escape normal growth controls but retain morphogenetic responses to extracellular matrix. Am. J. Obstet. Gynecol. 167:729–735; 1992.PubMedGoogle Scholar
  27. 27.
    Massad, L. S.; Mutch, D. G.; Powell, C. B., et al. Expression of a resistance mechanism in ovarian and cervical carcinoma cells prevents their lysis by γ-interferon. Cancer Res. 50:4923–4928; 1990.PubMedGoogle Scholar
  28. 28.
    Meezen, E.; Hjelle, J. T.; Brendel, K. A simple, versatile, nondisruptive method for the isolation of morphologically and chemically pure basement membranes from several tissues. Life Sci. 17:1721–1732; 1975.CrossRefGoogle Scholar
  29. 29.
    Milici, A. J.; Furie, M. B.; Carley, W. W. The formation of fenestrations and channels by capillary endothelium in vitro. Proc. Natl. Acad. Sci. USA 82:6181–6185; 1985.PubMedCrossRefGoogle Scholar
  30. 30.
    Montesano, R. Cell-extracellular matrix interaction in morphogenesis: an in vitro approach. Experientia 42:977–985; 1986.PubMedCrossRefGoogle Scholar
  31. 31.
    Morley, P.; Armstrong, D. T.; Gore-Langton, R. E. Fibronectin stimulates growth but not follicle-stimulating hormone-dependent differentiation of rat granulosa cells in vitro. J. Cell. Physiol. 132:226–236; 1987.PubMedCrossRefGoogle Scholar
  32. 32.
    Nicosia, S. V.; Johnson, J. H. Surface morphology of the ovarian mesothelium (surface epithelium) and of other pelvic and extrapelvic mesothelial sites in the rabbit. Int. Soc. Gynecol. Pathol. 3:249–260; 1984.CrossRefGoogle Scholar
  33. 33.
    Nicosia, S. V.; Johnson, J. H.; Steibel, E. J. Isolation and ultrastructure of rabbit ovarian mesothelium (surface epithelium). Int. J. Gynecol. Pathol. 3:348–360; 1984.PubMedCrossRefGoogle Scholar
  34. 34.
    Nishida, T.; Ueda, A.; Fukuda, M., et al. Interactions of extracellular collagen and corneal fibroblasts: morphologic and biochemical changes of rabbit corneal cells cultured in a collagen matrix. In Vitro Cell. Dev. Biol. 24:1009–1014; 1988.PubMedCrossRefGoogle Scholar
  35. 35.
    O’Guin, W. M.; Scherner, A.; Sun, T.-T. Immunofluorescence staining of keratin filaments in cultured epithelial cells. J. Tissue Cult. Methods 9:123–128; 1985.CrossRefGoogle Scholar
  36. 36.
    Ossowski, L. In vivo invasion of modified chorioallantoic membrane by tumor cells: the role of cell surface-bound urokinase. J. Cell Biol. 107:2437–2445; 1988.PubMedCrossRefGoogle Scholar
  37. 37.
    Rojkind, M.; Gatmaitan, Z.; Mackensen, S., et al. Connective tissue biomatrix: its isolation and utilization for long-term cultures of normal rat hepatocytes. J. Cell Biol. 87:255–263; 1980.PubMedCrossRefGoogle Scholar
  38. 38.
    Scott-Burden, T.; Resink, T. J.; Burgin, M., et al. Extracellular matrix: differential influence on growth and biosynthesis patterns of vascular smooth muscle cells from SHR and WKY rats. J. Cell. Physiol. 141:267–274; 1989.PubMedCrossRefGoogle Scholar
  39. 39.
    Shimo-Oka, T.; Hasegawa, Y.; Ichio, I. Differential properties of attachment of human fibroblasts to various extracellular matrix proteins. Cell Struct. Funct. 13:515–524; 1988.PubMedCrossRefGoogle Scholar
  40. 40.
    Siemens, C. H.; Auersperg, N. Serial propagation of human ovarian surface epithelium in tissue culture. J. Cell. Physiol. 134:347–356; 1988.PubMedCrossRefGoogle Scholar
  41. 41.
    Simon-Assmann, P.; Bouziges, F.; Daviaud, D., et al. Synthesis of glycosaminoglycans by undifferentiated and differentiated HT29 human colonic cancer cells. Cancer Res. 47:4478–4484; 1987.PubMedGoogle Scholar
  42. 42.
    Tan, E.; Glassberg, E.; Orlsen, D. R., et al. Extracellular matrix gene expression by human endothelial and smooth muscle cells. Matrix 11:380–387; 1991.PubMedGoogle Scholar
  43. 43.
    Towbin, H.; Staehelin, T.; Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354; 1979.PubMedCrossRefGoogle Scholar
  44. 44.
    Watt, F. The extracellular matrix and cell shape. T.I.B.S. 11:482–485; 1986.Google Scholar
  45. 45.
    Young, R. H.; Clement, P. B.; Scully, R. E. The ovary. In: Sternberg, S. S., ed. Diagnostic surgical pathology. New York: Raven Press; 1989:1655–1734.Google Scholar
  46. 46.
    Zubay, G. Biochemistry. Reading, MA: Addison-Wesley Publishing Co.; 1983:577–590.Google Scholar

Copyright information

© Tissue Culture Association 1994

Authors and Affiliations

  • Patricia A. Kruk
    • 1
  • Nelly Auersperg
    • 1
  1. 1.Department of AnatomyUniversity of British ColumbiaVancouverCanada

Personalised recommendations