Newly established cell lines fromDrosophila larval CNS express neural specific characteristics

  • Kumiko Ui
  • Shoko Nishihara
  • M. Sakuma
  • S. Togashi
  • R. Ueda
  • Y. Miyata
  • T. Miyake
Cellular Models

Summary

From the central nervous system ofDrosophila melanogaster 3rd instar larvae, eight continuous cell lines have been established (named ML-DmBG1 to 8). Using ML-DmBG2, single colony isolation was carried out and six colonial clones were obtained. All reacted to the antibody to horseradish peroxidase, which is a neuronal marker in insects. Acetylcholine, a known neurotransmitter inDrosophila, was detected in three of the colonial clones by high performance liquid chromatography. Therefore, it is concluded that the established colonial clones are neural cells originating in the larval central nervous system. Among them, some variation was observed with respect to morphology, acetylcholine content, and reactivity to anti-HRP. The variation may reflect the heterogeneity of cells composing the central nervous system.

Key words

Drosophila central nervous system cell lines anti-HRP antibody acetylcholine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cross, D. P.; Sang, J. H. Cell culture of individualDrosophila embryos I. Development of wild-type cultures. J. Embryol. Exp. Biol. 45:161–172; 1978.Google Scholar
  2. 2.
    Currie, D. A.; Milner, M. J.; Evans, C. W. The growth and differentiationin vitro of leg and wing imaginal disc cells fromDrosophila melanogaster. Development 102:805–814; 1988.Google Scholar
  3. 3.
    Davis, K. T.; Shearn, A.In vitro growth of imaginal disks fromDrosophila melanogaster. Science 196:438–440; 1977.PubMedCrossRefGoogle Scholar
  4. 4.
    Echalier, G.; Ohanessian, A.In vitro culture ofDrosophila melanogaster embryonic cells. In Vitro 6:162–172; 1970.PubMedCrossRefGoogle Scholar
  5. 5.
    Falkmer, S.; Emdin, S.; Have, N., et al. Insulin in invertebrate and cyclostomes. Am. Zool. 13:625–638; 1973.Google Scholar
  6. 6.
    Furst, A.; Mahowald, A. P. Differentiation of primary embryonic neuroblasts in purified neural cell cultures fromDrosophila. Dev. Biol. 109:184–192; 1985.PubMedCrossRefGoogle Scholar
  7. 7.
    Fujimori, K.; Yamamoto, K. Determination of acetylcholine and choline in perchlorate extracts of brain tissue using liquid chromatography-electrochemistry with an immobilized-enzyme reactor. J. Chromatogr. 414:167–173; 1987.PubMedCrossRefGoogle Scholar
  8. 8.
    Garofalo, R. S.; Rosen, O. M. Tissue localization ofDrosophila melanogaster insulin receptor transcripts during development. Mol. Cell. Biol. 8:1638–1647; 1988.PubMedGoogle Scholar
  9. 9.
    Gorczyca, M.; Hall, J. C. Immunohistochemical localization of choline acetyltransferase during development and inCha ts mutants ofDrosophila melanogaster. J. Neurosci. 7:1361–1369; 1987.PubMedGoogle Scholar
  10. 10.
    Jan, L. Y.; Jan, Y. N. Antibodies to horseradish peroxidase as specific neuronal markers inDrosophila and in grasshopper embryos. Proc. Natl. Acad. Sci. USA 79:2700–2704; 1982.PubMedCrossRefGoogle Scholar
  11. 11.
    Katz, F.; Moats, W.; Jan, L. N. A carbohydrate epitope expressed uniquely on the cell surface ofDrosophila neurons is altered in the mutantnac (neurally altered carbohydrate). EMBO J. 7:3471–3477; 1988.PubMedGoogle Scholar
  12. 12.
    Kim, Y-T.; Wu, C-F. Distinctions in growth cone morphology and motility between monopolar and multipolar neurons inDrosophila CNS cultures. J. Neurobiol. 22:263–275; 1991.PubMedCrossRefGoogle Scholar
  13. 13.
    Kim Y-T.; Wu, C-F. Reversible blockage of neurite development and growth cone formation in neuronal cultures of a temperature-sensitive mutant ofDrosophila. J. Neurosci. 7:3245–3255; 1987.PubMedGoogle Scholar
  14. 14.
    Kojima, T.; Sone, M.; Michiue, T.; Saigo, K. Mechanism of induction ofbar-like eye malformation by transient overexpression ofbar homeobox gene inDrosophila melanogaster. Genetica, in press.Google Scholar
  15. 15.
    Kuroda, Y.; Tamura, S. A technique for the culture of melanotic tumors ofDrosophila melanogaster in the synthetic medium. Med. J. Osaka. Univ. 7:137–144; 1956.Google Scholar
  16. 16.
    Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685; 1970.PubMedCrossRefGoogle Scholar
  17. 17.
    Lendahl, U.; McKsay, R. D. G. The use of cell lines in neurobiology. TINS 13:132–137; 1990.PubMedGoogle Scholar
  18. 18.
    Lewis, S. E.; Smallman, B. N. The estimation of acetylcholine in insects. J. Physiol. 134:241–256; 1956.PubMedGoogle Scholar
  19. 19.
    Meneses, P.; Ortiz, M. A. A protein extract fromDrosophila melanogaster with insulin-like activity. Comp. Biochem. Physiol. 51A:483–485; 1975.CrossRefGoogle Scholar
  20. 20.
    Miyake, T.; Ueda, R. Establishment of embryonic cell lines inDrosophila melanogaster. Protein, Nucleic Acid Enzyme Suppl.: 314–318; 1984.Google Scholar
  21. 21.
    Peel, D. J.; Milner, M. J. The diversity of cell morphology in cloned cell lines derived fromDrosophila imaginal discs. Roux’s Arch. Dev. Biol. 198:479–482; 1990.CrossRefGoogle Scholar
  22. 22.
    Saigo, K.; Ueda, R.; Miyake, T. Polymorphism and stability of histone gene clusters inDrosophila melanogaster cultured cells. Biochim. Biophys. Acta 740:390–401; 1983.PubMedGoogle Scholar
  23. 23.
    Salvaterra, P. M.; McCaman, R. E. Choline acetyltransferase and acetylcholine levels inDrosophila melanogaster. A study using two temperature-sensitive mutants. J. Neurosci. 5:903–910; 1985.PubMedGoogle Scholar
  24. 24.
    Schaeffer, W. I. Terminology associated with cell, tissue and organ culture, molecular biology and molecular genetics. In Vitro. Cell. Dev. Biol. 26:97–101; 1990.PubMedCrossRefGoogle Scholar
  25. 25.
    Schneider, I. Cell lines derived from late embryonic stages ofDrosophila melanogaster. J. Embryol. Exp. Morph. 27:353–365; 1972.PubMedGoogle Scholar
  26. 26.
    Seecof, R. L.; Alleaume, M.; Teplitz, R. L., et al. Differentiation of neurons and myocytes in cell cultures made fromDrosophila gastrulae. Exp. Cell Res. 69:161–173; 1971.PubMedCrossRefGoogle Scholar
  27. 27.
    Seecof, R.; Dewhurst, S. Insulin is aDrosophila hormone and acts to enhance the differentiation of embryonicDrosophila cells. Cell Differ. 3:63–70; 1974.PubMedCrossRefGoogle Scholar
  28. 28.
    Shields, G.; Sang, J. H. Characteristics of five cell types appearing duringin vitro culture of embryonic material fromDrosophila melanogaster. J. Embryol. Exp. Morph. 23a:53–69; 1970.Google Scholar
  29. 29.
    Snow, P. M.; Patel, N. H.; Harrelson, A., et al. Neural-specific carbohydrate moiety shared by many surface glycoproteins inDrosophila and grasshopper embryos. J. Neurosci. 7:4137–4144; 1987.PubMedGoogle Scholar
  30. 30.
    Straus, D. S. Effects of insulin on cellular growth and proliferation. Life Sci. 29:2131–2139; 1981.PubMedCrossRefGoogle Scholar
  31. 31.
    Ui, K.; Ueda, R.; Miyake, T. Cell lines from imaginal discs ofDrosophila melanogaster. In Vitro Cell. Dev. Biol. 23:707–710; 1987.PubMedCrossRefGoogle Scholar
  32. 32.
    Ui, K.; Ueda, R.; Miyake, T.In vitro cultures of cells from different kinds of imaginal discs ofDrosophila melanogaster. Jpn. J. Genet. 63:33–41; 1988.Google Scholar
  33. 33.
    Ui, K.; Togashi, S.; Ueda, R., et al. Establishment of cell lines from larval central nervous system ofDrosophila melanogaster. Jpn. J. Genet. 63:606; 1988.Google Scholar
  34. 34.
    Ui, K.; Ueda, R.; Miyake, T.In vitro culture of cells from dissociated imaginal disc ofDrosophila melanogaster. In: Mitsuhashi, J., ed. Invertebrate cell system applications, vol. II. Florida: CRC press; 1989:212–231.Google Scholar
  35. 35.
    Ui, K.; Sakuma, M.; Nishihara, S., et al. Neurotransmitter analysis in cell lines from larval CNS ofDrosophila melanogaster. Jpn. J. Genet. 64:492; 1989.Google Scholar
  36. 36.
    White, K.; Kankel, D. R. Patterns of cell division and cell movement in the formation of the imaginal nervous system inDrosophila melanogaster. Dev. Biol. 65:296–321; 1978.PubMedCrossRefGoogle Scholar
  37. 37.
    Wu, C-F. Neurogenetic studies ofDrosophila central nervous system neurons in culture. In: Beadle, D. J.; Lees, G.; Kater, S. B., eds. Cell culture approaches to invertebrate neuroscience. New York: Academic Press; 1988:149–187.Google Scholar
  38. 38.
    Wu, C-F.; Sakai, K.; Saito, M., et al. GiantDrosophila neurons differentiated from cytokinesis-arrested embryonic neuroblasts. J. Neurobiol. 21:499–507; 1989.CrossRefGoogle Scholar
  39. 39.
    Wu, C-F,; Suzuki, N.; Poo, M-M. Dissociated neurons from normal and mutantDrosophila larval nervous system in cell culture. J. Neurosci. 3:1888–1899; 1983.PubMedGoogle Scholar
  40. 40.
    Wyss, C. Ecdysterone, insulin and fly extract needed for the proliferation of normalDrosophila cells in defined medium. Exp. Cell Res. 139:297–307; 1982.PubMedCrossRefGoogle Scholar

Copyright information

© Tissue Culture Association 1994

Authors and Affiliations

  • Kumiko Ui
    • 1
  • Shoko Nishihara
    • 1
  • M. Sakuma
    • 2
  • S. Togashi
    • 1
  • R. Ueda
    • 1
  • Y. Miyata
    • 2
  • T. Miyake
    • 1
  1. 1.Laboratory of Cell BiologyMitsubishi Kasei Institute of Life SciencesTokyoJapan
  2. 2.Department of PharmacologyNippon Medical SchoolTokyoJapan
  3. 3.Laboratory of Cell Biology, Institute of Life ScienceSoka UniversityTokyoJapan

Personalised recommendations