Specific stimulation of basal lamina heparan sulfate proteoglycan in mouse uterine epithelium by matrigel and by transforming growth factor-β1

  • John E. Morris
  • Georgeen Gaza
  • Sandra W. Potter
Growth, Differentiation, And Senescence

Summary

The basal lamina of differentiated epithelium normally turns over only slowly unless stimulated by tissue repair and growth. We show here that one mechanism of this stimulation, as modeled by basal lamina proteoglycan synthesis, may be the release of basal lamina-bound transforming growth factor (TGF-β). A large heparan sulfate proteoglycan (HSPG, 0.2Kav on Sepharose CL-4B) that was extractable from mouse uterine epithelium with 4M guanidine-HCl or 1M KCl was recognized by a specific monoclonal antibody to the basal lamina HSPG, perlecan. This HSPG was metabolically inactive with respect to [35S]-sulfate labeling in pieces of whole uterus during 4 h of culture, but it was labeled in isolated cells under the same conditions, provided that the cells had been cultured at least 6 to 12 h before labeling. The rate of labeling was then constant during at least 4 days in culture in serum-containing medium. Cultures on Matrigel showed an enhanced [35S]-sulfate labeling specifically in the 0.2Kav HSPG fraction. Partial stimulation was obtained with a serum-free medium extract of Matrigel, which fractionated on Sephadex G-50 in two components; a major one >30 kDa and the other at about 15 to 25 kDa. The specific stimulation was mimicked by the addition of 10 ng/ml of TGF-β1, but there was no specific stimulation by basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), insulinlike growth factor-1 (IGF-1), or interleukin-1 (IL-1). TGF-β1 was identified as a 12.5 kDa monomer in thiol-reduced Matrigel and Matrigel extracts by polyclonal blocking antibodies on transblots following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Failure of excess amounts of these antibodies to block Matrigel-stimulated basal lamina HSPG synthesis indicates that TGF-β1 may be only one component of Matrigel that is important in stimulating basal lamina HSPG synthesis in culture. We suggest that in vivo TGF-β1 is bound to macromolecular components of mouse uterine epithelial basal lamina, where it may be sequestered until microenvironmental changes make it available to promote basal lamina HSPG synthesis.

Key words

uterine epithelial cells basal lamina heparan sulfate proteoglycan perlecan TGF-β Matrigel 

References

  1. 1.
    Andres, J. L.; DeFalcis, D.; Noda, M., et al. Binding of two growth factor families to separate domains of the proteoglycan betaglycan. J. Biol. Chem. 267:5927–5930; 1992.PubMedGoogle Scholar
  2. 2.
    Barnard, J. A.; Lyons, R. M.; Moses, H. L. The cell biology of transforming growth factor β. Biochim. Biophys. Acta 1032:79–87; 1990.PubMedGoogle Scholar
  3. 3.
    Bassols, A.; Massagué, J. Transforming growth factor beta regulates the expression and structure of extracellular matrix chondroitin/dermatan sulfate proteoglycans. J. Biol. Chem. 263:3039–3045; 1988.PubMedGoogle Scholar
  4. 4.
    Bernfield, M.; Hooper, K. C. Possible regulation of FGF activity by syndecan, an integral membrane heparan sulfate proteoglycan. Ann. NY Acad. Sci. 638:182–194; 1991.PubMedCrossRefGoogle Scholar
  5. 5.
    Boyd, F. T.; Cheifetz, S.; Andres, J., et al. Transforming growth factorbeta receptors and binding proteoglycans. J. Cell. Sci. Suppl. 13:131–138; 1990.PubMedGoogle Scholar
  6. 6.
    Carson, D. D.; Tang, J.-P.; Julian, J., et al. Vectorial secretion of proteoglycans by polarized rat uterine epithelial cells. J. Cell Biol. 107:2425–2435; 1988.PubMedCrossRefGoogle Scholar
  7. 7.
    Dabin, I.; Courtois, Y. In vitro kinetics of basic fibroblast growth factor diffusion across a reconstituted corneal endothelium. J. Cell. Physiol. 147:396–402; 1991.PubMedCrossRefGoogle Scholar
  8. 8.
    Dodge, G. R.; Kovalszky, I.; Hassell, J. R., et al. Transforming growth factor beta alters the expression of heparan sulfate proteoglycan in human colon carcinoma cells. J. Biol. Chem. 265:18023–18029; 1990.PubMedGoogle Scholar
  9. 9.
    Fawcett, J.; Harris, A. L.; Bicknell, R. Isolation and properties in culture of human adrenal capillary endothelial cells. Biochem. Biophys. Res. Commun. 174:903–908; 1991.PubMedCrossRefGoogle Scholar
  10. 10.
    Fong, C. J.; Sherwood, E. R.; Sutkowski, D. M., et al. Reconstituted basement membrane promotes morphological and functional differentiation of primary human prostatic epithelial cells. Prostate 19:221–235; 1991.PubMedCrossRefGoogle Scholar
  11. 11.
    Glasser, S. R.; Julian, J.; Decker, G. L., et al. Development of morphological and functional polarity in primary cultures of immature rat uterine epithelial cells. J. Cell Biol. 107:2409–2423; 1988.PubMedCrossRefGoogle Scholar
  12. 12.
    Grant, D. S.; Lelkes, P. I.; Fukuda, K., et al. Intracellular mechanisms involved in basement membrane induced blood vessel differentiation in vitro. In Vitro Cell. Dev. Biol. 27A:327–336; 1991.PubMedGoogle Scholar
  13. 13.
    Griffith, C. M.; Sanders, E. J. Effects of extracellular matrix components on the differentiation of chick embryo tail bud mesenchyme in culture. Differentiation 47:61–68; 1991.PubMedCrossRefGoogle Scholar
  14. 14.
    Hayashi, K.; Hayashi, M.; Jalkanen, M., et al. Immunocytochemistry of cell surface heparan sulfate proteoglycan in mouse tissues. A light and electron microscopic study. J. Histochem. Cytochem. 35:1079–1088; 1987.PubMedGoogle Scholar
  15. 15.
    Heimann, T. G.; Githens, S. Rat pancreatic duct epithelium cultured on a porous support coated with extracellular matrix. Pancreas 6:514–521; 1991.PubMedCrossRefGoogle Scholar
  16. 16.
    Joshi, M. S. Growth and differentiation of the cultured secretory cells of the cow oviduct on reconstituted basement membrane. J. Exp. Zool. 260:229–238; 1991.PubMedCrossRefGoogle Scholar
  17. 17.
    Julian, J.; Carson, D. D.; Glasser, S. R. Polarized rat uterine epithelium in vitro: responses to estrogen in defined medium. Endocrinology 130:68–78; 1992.PubMedCrossRefGoogle Scholar
  18. 18.
    Kato, M.; Koiki, Y.; Suzuki, S., et al. Basement membrane proteoglycans in various tissues: characterization using monoclonal antibodies to the Engelbreth-Holm-Swarm mouse tumor low density heparan sulfate proteoglycan. J. Cell Biol. 106:2203–2210; 1988.PubMedCrossRefGoogle Scholar
  19. 19.
    Kato, M.; Oike, Y.; Suzuki, S., et al. Selective removal of heparan sulfate chains from proteoheparan sulfate with a commercial preparation of heparitinase. Anal. Biochem. 148:479–484; 1985.PubMedCrossRefGoogle Scholar
  20. 20.
    Kibbey, M. C.; Royce, L. S.; Dym, M., et al. Glandular-like morphogenesis of the human submandibular tumor cell line A253 on basement membrane components. Exp. Cell Res. 198:343–351; 1992.PubMedCrossRefGoogle Scholar
  21. 21.
    Kjellén, L.; Lindahl, U. Proteoglycans: structures and interactions. In: Richardson, C. C., ed. Annual review of biochemistry, vol 60. Palo Alto, CA: Annual Reviews Inc.; 1991:443–475.Google Scholar
  22. 22.
    Kleinman, H. K.; McGarvery, M. L.; Liotta, L. A., et al. Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 21:6188–6193; 1982.PubMedCrossRefGoogle Scholar
  23. 23.
    Kleinman, H. K.; McGarvey, M. L.; Star, V. L., et al. Basement membrane complexes with biological activity. Biochemistry 25:312–318; 1986.PubMedCrossRefGoogle Scholar
  24. 24.
    Laemmli, U. K. Cleavage of the structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685; 1970.PubMedCrossRefGoogle Scholar
  25. 25.
    Lala, P. K.; Graham, C. H. Mechanisms of trophoblast invasiveness and their control: the role of proteases and protease inhibitors. Cancer Metastasis Rev. 9:369–379; 1990.PubMedCrossRefGoogle Scholar
  26. 26.
    Lortat-Jacob, H.; Kleinman, H. K.; Grimaud, J. A. High-affinity binding of interferon-gamma to a basement membrane complex (Matrigel). J. Clin. Invest. 87:878–883; 1991.PubMedGoogle Scholar
  27. 27.
    Mani, S. K.; Carson, D. D.; Glasser, S. R. Steroid hormones differentially modulate glycoconjugate synthesis and vectorial secretion by polarized uterine epithelial cells in vitro. Endocrinology 130:240–248; 1992.PubMedCrossRefGoogle Scholar
  28. 28.
    Mannuzza, F. J. Removal of soluble growth factors from Matrigel basement membrane matrix and the demonstration and quantitation of insoluble, matrix-bound TGF-beta. Mol. Biol. Cell 3:226a; 1992.Google Scholar
  29. 29.
    Massagué, J.; Cheifetz, S.; Boyd, F. T., et al. TGF-beta receptors and TGF-beta binding proteoglycans: recent progress in identifying their functional properties. Ann. NY Acad. Sci. 593:59–72; 1990.PubMedCrossRefGoogle Scholar
  30. 30.
    Morris, J. E.; Potter, S. W. A comparison of developmental changes in surface charge in mouse blastocysts and uterine epithelium using DEAE beads and dextran sulfate in vitro. Dev. Biol. 103:190–199; 1984.PubMedCrossRefGoogle Scholar
  31. 31.
    Morris, J. E.; Potter, S. W.; Gaza-Bulseco, G. Estradiol induces an accumulation of free heparan sulfate glycosaminoglycan chains in uterine epithelium. Endocrinology 122:242–253; 1988.PubMedCrossRefGoogle Scholar
  32. 32.
    Morris, J. E.; Potter, S. W.; Gaza-Bulseco, G. Estradiol-stimulated turnover of heparan sulfate proteoglycan in mouse uterine epithelium. J. Biol. Chem. 263:4712–4718; 1988.PubMedGoogle Scholar
  33. 33.
    Morris, J. E.; Yanagishita, M.; Hascall, V. C. Proteoglycans synthesized by embryonic chicken retina in culture: composition and compartmentalization. Arch. Biochem. Biophys. 258:206–218; 1987.PubMedCrossRefGoogle Scholar
  34. 34.
    Nakamura, T.; Miller, D.; Ruoslahti, E., et al. Production of extracellular matrix by glomerular epithelial cells is regulated by transforming growth factor-beta 1. Kidney. Int. 41:1213–1221; 1992.PubMedGoogle Scholar
  35. 35.
    Newton, L. K.; Yung, W. K.; Pettigrew, L. C., et al. Growth regulatory activities of endothelial extracellular matrix: mediation by transforming growth factor-beta. Exp. Cell Res. 190:127–132; 1990.PubMedCrossRefGoogle Scholar
  36. 36.
    Nogawa, H.; Takahashi, Y. Substitution for mesenchyme by basement-membrane-like substratum and epidermal growth factor in inducing branching morphogenesis of mouse salivary epithelium. Development 112:855–861; 1991.PubMedGoogle Scholar
  37. 37.
    Noonan, D. M.; Fulle, A.; Valente, P., et al. The complete sequence of perlecan, a basement membrane heparan sulfate proteoglycan, reveals extensive similarity with laminin A chain, low density lipoprotein-receptor, and the neural cell adhesion molecule. J. Biol. Chem. 266:22939–22947; 1991.PubMedGoogle Scholar
  38. 38.
    Paralkar, V. M.; Vukicevic, S.; Reddi, A. H. Transforming growth factor beta type 1 binds to collagen IV of basement membrane matrix: implications for development. Dev. Biol. 143:303–308; 1991.PubMedCrossRefGoogle Scholar
  39. 39.
    Potter, S. W.; Morris, J. E. Changes in histochemical distribution of cell surface heparan sulfate proteoglycan in mouse uterus during the estrous cycle and early pregnancy. Anat. Rec. 234:383–390; 1992.PubMedCrossRefGoogle Scholar
  40. 40.
    Rapraeger, A. Transforming growth factor (type β) promotes the addition of chondroitin sulfate chains to the cell surface proteoglycan (syndecan) of mouse mammary epithelia. J. Cell Biol. 109:2509–2518; 1989.PubMedCrossRefGoogle Scholar
  41. 41.
    Rapraeger, A.; Jalkanen, M.; Bernfield, M. Cell surface proteoglycan associates with the cytoskeleton at the basolateral cell surface of mouse mammary epithelial cells. J. Cell Biol. 103:2683–2696; 1986.PubMedCrossRefGoogle Scholar
  42. 42.
    Ruoslahti, E.; Yamaguchi, Y. Proteoglycans as modulators of growth factor activities. Cell 64:867–869; 1991.PubMedCrossRefGoogle Scholar
  43. 43.
    Saunders, S.; Jalkanen, M.; O’Farrell, S., et al. Molecular cloning of syndecan, an integral membrane proteoglycan. J. Cell Biol. 108:1547–1556; 1989.PubMedCrossRefGoogle Scholar
  44. 44.
    Silberstein, G. B.; Flanders, K. C.; Roberts, A. B., et al. Regulation of mammary morphogenesis: evidence for extracellular matrix-mediated inhibition of ductal budding by transforming growth factor-β1. Dev. Biol. 152:354–362; 1992.PubMedCrossRefGoogle Scholar
  45. 45.
    Silberstein, G. B.; Strickland, P.; Coleman, S., et al. Epithelium-dependent extracellular matrix synthesis in transforming growth factor-β1-growth-inhibited mouse mammary gland. J. Cell Biol. 110:2209–2219; 1990.PubMedCrossRefGoogle Scholar
  46. 46.
    Suemori, S.; Ciacci, C.; Podolsky, D. K. Regulation of transforming growth factor expression in rat intestinal epithelial cell lines. J. Clin. Invest. 87:2216–2221; 1991.PubMedCrossRefGoogle Scholar
  47. 47.
    Tamada, H.; McMaster, M. T.; Flanders, K. C., et al. Cell type-specific expression of transforming growth factor-beta 1 in the mouse uterus during the periimplantation period. Mol. Endocrinol. 4:965–972; 1990.PubMedCrossRefGoogle Scholar
  48. 48.
    Taub, M.; Wang, Y.; Szczesny, T. M., et al. Epidermal growth factor or transforming growth factor alpha is required for kidney tubulogenesis in Matrigel cultures in serum-free medium. Proc. Natl. Acad. Sci. USA 87:4002–4006; 1990.PubMedCrossRefGoogle Scholar
  49. 49.
    Towbin, H.; Staehelin, T.; Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354; 1979.PubMedCrossRefGoogle Scholar
  50. 50.
    Vukicevic, S.; Kleinman, H. K.; Luyten, F. P., et al. Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp. Cell Res. 202:1–8; 1992.PubMedCrossRefGoogle Scholar
  51. 51.
    Woods, A.; Couchman, J. R.; Höök, M. Heparan sulfate proteoglycans of rat embryo fibroblasts. A hydrophobic form may link cytoskeleton and matrix components. J. Biol. Chem. 260:10872–10879; 1985.PubMedGoogle Scholar
  52. 52.
    Wray, W.; Boulikas, T.; Wray, V. P., et al. Silver staining of proteins in polyacrylamide gels. Anal. Biochem. 118:197–203; 1981.PubMedCrossRefGoogle Scholar
  53. 53.
    Yayon, A.; Klagsbrun, M.; Esko, J. D., et al. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64:841–848; 1991.PubMedCrossRefGoogle Scholar

Copyright information

© Tissue Culture Association 1994

Authors and Affiliations

  • John E. Morris
    • 1
  • Georgeen Gaza
    • 1
  • Sandra W. Potter
    • 1
  1. 1.Department of ZoologyOregon State UniversityCorvallis

Personalised recommendations