Growth stimulation of ovarian and extraovarian mesothelial cells by corpus luteum extract

  • S. Setrakian
  • B. Oliveros-Saunders
  • S. V. Nicosia
Growth, Differentiation, And Senescence


Ovarian (OM) and extraovarian (EM) mesothelia represent a common source of gynecologic malignancies with yet unclear pathogenesis. Ovulation triggers a finite wave of DNA synthesis and morphogenesis only in native OM cells, probably through the activation of intraovarian growth factors. To evaluate their growth response to such factors, OM and EM cells were obtained from estrous New Zealand white rabbits by enzymatic dispersion and unit gravity sedimentation. Cell cultures were maintained in serumless, fibronectin-rich, HL-1 medium without or with rabbit corpora lutea tissue extracts (CLE). The growth effects of CLE were evaluated by measuring percent changes in cell number relative to controls (CCN), cell population doublings (CPD), cell population doubling time in hours (CPDT). After 7.5 days, CLE enhanced (P<0.001) the growth of both OM and EM cells, which exhibited, respectively, a CCN of 214 and 257%; a CPD of 2.89 and 2.87; and a CPDT of 54.39 and 59.49. CLE-treated OM and EM cells were smaller, formed more cohesive monolayers, and exhibited more frequent and diffuse microvilli than control cells. These data show a similar in vitro response of OM and EM cells to luteal growth factors, suggesting that the lack of postovulatory morphogenesis in native extraovarian mesothelia is due to the spatially restricted activity of intraovarian growth factors.

Key words

ovary mesothelia growth factors corpus luteum cell culture 


  1. 1.
    Adashi, E. Y.; Rohan, R. M. Intraovarian regulation. Peptidergic signaling systems. TEM 3:243–247; 1992.PubMedGoogle Scholar
  2. 2.
    Anderson, E.; Lee, G.; Letourneau, R., et al. Cytological observations of the ovarian epithelium of mammals during the reproductive cycle. J. Morphol. 150:135–166; 1976.PubMedCrossRefGoogle Scholar
  3. 3.
    Auersperg, N.; Siemens, C. H.; Myrdal, S. E. Human ovarian surface epithelium in primary culture. In Vitro 20:743–775; 1984.PubMedCrossRefGoogle Scholar
  4. 4.
    Auersperg, N.; Maclaren, I. A.; Kruk, P. A. Ovarian surface epithelium: autonomous production of connective tissue-type extracellular matrix. Biol. Reprod. 44:717–724; 1991.PubMedCrossRefGoogle Scholar
  5. 5.
    Bell, D. A.; Scully, R. E. Benign and borderline serous lesions of the peritoneum in women. Pathol. Annu. 2:1–21; 1989.Google Scholar
  6. 6.
    Berchuck, A.; Olt, G. J.; Everitt, L., et al. The role of peptide growth factors in epithelial ovarian cancer. Obstet. Gynecol. 75:255–262; 1990.PubMedGoogle Scholar
  7. 7.
    Bermudez, E.; Everitt, J.; Walter, C. Expression of growth factor and growth factor receptor RNA in pleural mesothelial cells in culture. Exp. Cell Res. 190:91–98; 1990.PubMedCrossRefGoogle Scholar
  8. 8.
    Bjersing, L.; Cajander, S. Ovulation and the role of the ovarian surface epithelium. Experimentia 31:605–608; 1975.CrossRefGoogle Scholar
  9. 9.
    Blaustein, A.; Hyun, L. Surface cells of the ovary and pelvic peritoneum: a histochemical and ultrastructural comparison. Gynecol. Oncol. 8:34–43; 1979.PubMedCrossRefGoogle Scholar
  10. 10.
    Blaustein, A. Surface (germinal) epithelium and related ovarian neoplasm. Pathol. Annu. 16:247–294; 1981.PubMedGoogle Scholar
  11. 11.
    Bradford, M. N. A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing a principle of protein-dye binding. Ann. Biochem. 72:238–254; 1976.CrossRefGoogle Scholar
  12. 12.
    Gillett, W. R.; Mitchell, A.; Hurst, P. R. A scanning electron microscopic study of the human ovarian surface epithelium: characterization of two cell types. Hum. Reprod. 6:645–650; 1991.PubMedGoogle Scholar
  13. 13.
    Gondos, B. Surface epithelium of the developing ovary. Am. J. Pathol. 81:303–320; 1975.PubMedGoogle Scholar
  14. 14.
    Gorospe, W. C.; Spangelo, B. L. Interleukin-6 production by rat granulosa cells in vitro: effects of cytokines, follicle-stimulating hormone, and cyclic, 3′-5′-adenosine monophosphate. Biol. Reprod. 48:538–543; 1993.PubMedCrossRefGoogle Scholar
  15. 15.
    Gospodarowicz, D.; Plouet, J.; Fujii, D. K. Ovarian germinal epithelial cells respond to basic fibroblast growth factor and express its gene: implications for early folliculogenesis. Endocrinology 125:1266–1276; 1989.PubMedCrossRefGoogle Scholar
  16. 16.
    Hamilton, T. C. Ovarian cancer, part I. Biol. Curr. Prob. Cancer 41:5–57; 1992.CrossRefGoogle Scholar
  17. 17.
    Hamilton, T. C.; Davies, P.; Griffiths, K. Steroid-hormone receptor status in the normal and neoplastic ovarian surface germinal epithelium. In: Greenwald, G. S.; Terranova, C. F., eds. Factors regulating ovarian function (1983). New York: Raven Press;:81–85.Google Scholar
  18. 18.
    Kimura, A.; Koga, S.; Kudoh, H., et al. Peritoneal mesothelial cell injury factors in rat cancerous ascites. Cancer Res. 45:4330–4333; 1985.PubMedGoogle Scholar
  19. 19.
    Motta, P.; Van Blerkom, J.; Makabe, S. Changes in the surface morphology of ovarian germinal epithelium during the reproductive cycle in some pathological conditions. J. Submicrosc. Cytol. 12:407–415; 1980.Google Scholar
  20. 20.
    Motta, P. M.; Van Blerkom, J. Scanning electron microscopy of the mammalian ovary. In: Motta, P. M.; Hafez, E. S. E., eds. Biology of the ovary. New York: Martinus Nijhoff; 1980:162–175.Google Scholar
  21. 21.
    Mills, G. B.; May, C.; Hill, M., et al. Ascitic fluid from human ovarian cancer patients contains growth factors necessary for intraperitoneal growth of human ovarian adenocarcinoma cells. J. Clin. Invest. 86:851–855; 1990.PubMedCrossRefGoogle Scholar
  22. 22.
    Nicosia, S. V. In vivo and in vitro models for investigating growth and morphogenesis in ovarian mesothelia. Lab. Invest. 64:59a; 1991.Google Scholar
  23. 23.
    Nicosia, S. V. Morphological changes on the human ovary throughout life. In: Serra, G. B., ed. The ovary. New York: Raven Press; 1983:57–81.Google Scholar
  24. 24.
    Nicosia, S. V.; Johnson, J. H. Surface morphology of ovarian mesothelium (surface epithelium) and of other pelvic and extrapelvic mesothelial sites in the rabbit. Int. J. Gynecol. Pathol. 3:249–260; 1984.PubMedCrossRefGoogle Scholar
  25. 25.
    Nicosia, S. V.; Johnson, J. H.; Streibel, E. J. Isolation and ultrastructure of rabbit ovarian mesothelium (surface epithelium). Int. J. Gynecol. Pathol. 3:348–360; 1984.PubMedCrossRefGoogle Scholar
  26. 26.
    Nicosia, S. V.; Johnson, J. H.; Streibel, E. J. Growth characteristics of rabbit ovarian mesothelial (surface epithelial) cells. Int. J. Gynecol. Pathol. 4:58–74; 1985.PubMedCrossRefGoogle Scholar
  27. 27.
    Nicosia, S. V.; Narconis, R. J.; Saunders, B. O. Regulation and temporal sequence of surface epithelium morphogenesis in the postovulatory rabbit ovary. Prog. Clin. Biol. Res. 296:111–119; 1989.PubMedGoogle Scholar
  28. 28.
    Nicosia, S. V.; Nicosia, R. F. Neoplasms of the ovarian mesothelium. In: Azar, H. A., ed. Pathology of human neoplasms. New York: Raven Press; 1988:435–486.Google Scholar
  29. 29.
    Nicosia, S. V.; Saunders, B. O. Initial characterization of a luteal growth factor for ovarian mesothelial cells. In: Hirshfield, A. H., ed. Growth factors and the ovary. New York: Plenum Press; 1989:237–244.Google Scholar
  30. 30.
    Nicosia, S. V.; Saunders, B. O.; Acevedo-Duncan, M. E., et al. Biopathology of ovarian mesothelium. In: Familiari, G.; Makabe, S.; Motta, P. M., eds. Ultrastructure of the ovary. New York: Kluwer Academic Publishers; 1991:287–310.Google Scholar
  31. 31.
    Niebdala, M. J.; Crickard, K.; Bernacki, R. J. Interactions of human ovarian tumor cells with human mesothelial cells grown on extracellular matrix. Anin vitro model system for studying tumor cell adhesion and invasion. Exp. Cell Res. 160:499–513; 1985.CrossRefGoogle Scholar
  32. 32.
    Osterholzer, H. O.; Johnson, H. J.; Nicosia, S. V. An autoradiographic study of rabbit ovarian surface epithelium before and after ovulation. Biol. Reprod. 33:247–258; 1985.PubMedCrossRefGoogle Scholar
  33. 33.
    Osterholzer, H. O.; Streibel, E. J.; Nicosia, S. V. Effect of protein hormones on ovarian surface epithelial cells. Biol. Reprod. 33:247–258; 1985.PubMedCrossRefGoogle Scholar
  34. 34.
    Piquette, G. N.; Timms, B. G. Isolation and characterization of rabbit ovarian surface epithelium, granulosa cells, and peritoneal mesothelium in primary culture. In Vitro Cell. Dev. Biol. 26:471–481; 1990.PubMedCrossRefGoogle Scholar
  35. 35.
    Porter, K.; Prescott, D.; Frye, J. Changes in surface morphology of Chinese hamster ovary cells during the cell cycle. J. Cell Biol. 57:815–836; 1973.PubMedCrossRefGoogle Scholar
  36. 36.
    Setrakian, S. H.; Saunders, B. O.; Nicosia, S. V. Isolation and characterization of rabbit peritoneal mesothelial cells. Acta Cytol. 34:(1)92–100; 1990.PubMedGoogle Scholar
  37. 37.
    Van Blerkom, J.; Motta, P. The cellular basis of mammalian reproduction. Baltimore: Urban and Schwarzenberg; 1979.Google Scholar
  38. 38.
    Vergara, J.; Ingram, P.; Stone, K. Microvilli and cell associationin vitro. Scanning Electron Microsc. 2:111–117; 1977.Google Scholar

Copyright information

© Tissue Culture Association 1993

Authors and Affiliations

  • S. Setrakian
    • 2
  • B. Oliveros-Saunders
    • 1
  • S. V. Nicosia
    • 1
  1. 1.Department of PathologyUniversity of South Florida College of Medicine and H. Lee Moffitt Cancer Center and Research InstituteTampa
  2. 2.Institute of PathologyCase Western UniversityCleveland

Personalised recommendations