Establishment and characterization of an immortalized but non-transformed human prostate epithelial cell line: BPH-1

  • S. W. Hayward
  • R. Dahiya
  • G. R. Cunha
  • J. Bartek
  • N. Deshpande
  • P. Narayan
Cellular Models


This report describes the development and characterization of an epithelial cell line (BPH-1) from human prostate tissue obtained by transurethral resection. Primary epithelial cell cultures were immortalized with SV40 large T antigen. One of the isolated clones was designated BPH-1. These cells have a cobblestone appearance in monolayer culture and are non-tumorigenic in nude mice following subcutaneous injection or subrenal capsule grafting. They express the SV40 large T antigen and exhibit increased levels of p53, as determined by immunocytochemistry. Cytogenetic analysis by G-banding demonstrated an aneuploid karyotype with a modal chromosome number of 76 (range 71 to 79,n=28) and 6 to 8 marker chromosomes. Some structurally rearranged chromosomes were observed, but the Y chromosome was normal. The expressed cytokeratin profile was consistent with a prostatic luminal epithelial cell. This profile was the same as that of primary prostatic epithelial cultures from which the BPH-1 cells were derived. In serum-free culture in plastic dishes epidermal growth factor (EGF), transforming growth factor (TGF)-α, fibroblast growth factor (FGF) 1 (aFGF), and FGF 7 (KGF) induced increased proliferation in these cells whereas FGF 2 (bFGF), TGF-β1, and TGF-β2 inhibited proliferative activity. Testosterone had no direct effect on the proliferative rate of BPH-1 cells. 5α-Reductase, 3α-hydroxysteroid oxidoreductase, and 17β-hydroxy-steroid oxidoreductase activities were detected in BPH-1 cells. Expression of androgen receptors and the secretory markers, prostate specific antigen and prostatic acid phosphatase, were not detectable by immunocytochemistry, biochemical assay, or RT-PCR analysis.

Key words

prostate epithelium SV40 growth factors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alarid, E. T.; Rubin, J. S.; Young, P., et al. Keratinocyte growth factor functions in epithelial induction during seminal vesicle development. Proc. Natl. Acad. Sci. USA 91:1074–1078; 1994.PubMedCrossRefGoogle Scholar
  2. 2.
    Anderson, K. M.; Liao, S. Selective retention of dihydrotestosterone by prostatic nuclei. Nature 219:277–279; 1968.PubMedCrossRefGoogle Scholar
  3. 3.
    Aumüller, G. Morphologic and endocrine aspects of prostatic function. Prostate 4:195–214; 1983.PubMedCrossRefGoogle Scholar
  4. 4.
    Bartek, J.; Bartkova, J.; Kyprianou, N., et al. Efficient immortalization of luminal epithelial cells from human mammary gland by introduction of simian virus 40 large tumor antigen with a recombinant retrovirus. Proc. Natl. Acad. Sci. USA 88:3520–3524; 1991.PubMedCrossRefGoogle Scholar
  5. 5.
    Bottaro, D. P.; Fortney, E.; Rubin, J. S., et al. A keratinocyte growth factor receptor-derived peptide antagonist identifies part of the ligand binding site. J. Biol. Chem. 268:9180–9183; 1993.PubMedGoogle Scholar
  6. 6.
    Brothman, A. R.; Peehl, D. M.; Patel, A. M., et al. Frequency and pattern of karyotypic abnomalities in human prostate cancer. Cancer Res. 50:3795–3803; 1990.PubMedGoogle Scholar
  7. 7.
    Burns, J.; Barton, C.; Wynford-Thomas, D., et al. In vitro transformation of epithelial cells by ras oncogenes. Epith. Cell Biol. 2:26–43; 1993.Google Scholar
  8. 8.
    Chiefetz, S.; Weatherbee, J. A.; Tsang, M.L-S., et al. The transforming growth factorβ system, a complex pattern of cross-reactive ligands and receptors. Cell 48:409–415; 1987.CrossRefGoogle Scholar
  9. 9.
    Coffey, D. S. Androgen action and the sex accessory tissues. In: Knobil, E.; Neill, J., ed. The physiology of reproduction. New York: Raven Press; 1988:1081–1119.Google Scholar
  10. 10.
    Connolly, J. M.; Rose, D. P. Secretion of epidermal growth factor and related polypeptides by the DU 145 human prostate cancer cell line. Prostate 15:177–186; 1989.PubMedCrossRefGoogle Scholar
  11. 11.
    Cooke, P. S.; Young, P.; Cunha, G. R. Androgen receptor expression in developing male reproductive organs. Endocrinology 128:2867–2873; 1991.PubMedGoogle Scholar
  12. 12.
    Cowan, R. A.; Cowan, S. K.; Grant, J. K., et al. Biochemical investigations of separated epithelium and stroma from benign hyperplastic prostatic tissue. J. Endocrinol. 74:111–120; 1977.PubMedGoogle Scholar
  13. 13.
    Cunha, G. R.; Alarid, E. T.; Turner, T., et al. Normal and abnormal development of the male urogenital tract: role of androgens, mesenchymal-epithelial interactions and growth factors. J. Andrology 13:465–475; 1992.Google Scholar
  14. 14.
    Cunha, G. R.; Reese, B. A.; Sekkingstad, M. Induction of nuclear androgen-binding sites in epithelium of the embryonic urinary bladder by mesenchyme of the urogenital sinus of embryonic mice. Endocrinology 107:1767–1770; 1980.PubMedGoogle Scholar
  15. 15.
    DeKlerk, D. P.; Coffey, D. S.; Ewing, L. L., et al. Comparison of spontaneous and experimentally induced canine prostatic hyperplasia. J. Clin. Invest. 64:842–849; 1979.PubMedGoogle Scholar
  16. 16.
    Deshpande, N.; Hallowes, R. C.; Cox, S., et al. Divergent effects of interferons on the growth of human benign prostatic hyperplasia cells in primary culture. J. Urol. 141:157–160; 1989.PubMedGoogle Scholar
  17. 17.
    Donjacour, A. A.; Cunha, G. R. Assessment of prostatic protein secretion in tissue recombinants made of urogenital sinus mesenchyme and urothelium from normal or androgen-insensitive mice. Endocrinology 131:2342–2350; 1993.CrossRefGoogle Scholar
  18. 18.
    Dunning, W. F. Prostate cancer in the rat. Natl. Cancer Inst. Monogr. 12:351–370; 1963.PubMedGoogle Scholar
  19. 19.
    Fowler, J. J.; Lau, J.; Ghosh, L., et al. Epidermal growth factor and prostatic carcinoma: an immunohistochemical study. J. Urol. 139:857–861; 1988.PubMedGoogle Scholar
  20. 20.
    Gregory, H.; Willshire, I. R.; Kavanagh, J. P., et al. Urogastrone-epidermal growth factor concentrations in prostatic fluid of normal individuals and patients with benign prostatic hypertrophy. Clin. Sci. 70:359–363; 1986.PubMedGoogle Scholar
  21. 21.
    Habib, F. K.; Benyon, L.; Chisholm, G. D., et al. The distribution of 5α-reductase and 3α(β)-hydroxysteroid dehydrogenase activities in the hyperplastic human prostate gland. Steroids 41:41–53; 1983.PubMedCrossRefGoogle Scholar
  22. 22.
    Habib, F. K.; Busuttil, A.; Robinson, R. A., et al. 5α-Reductase activity in human prostate cancer is related to the histological differentiation of the tumour. Clin. Endocrinol. 23:431–438; 1985.Google Scholar
  23. 23.
    Hallowes, R. C.; Bone, E. J.; Jones, W. A new dimension in the culture of human breast. In: Richards, J. R.; Rajan, K. T., ed. Tissue culture in medical research. Oxford, England: Pergamon Press; 1980:213–220.Google Scholar
  24. 24.
    Hallowes, R. C.; Cox, S.; Hayward, S., et al. Effects of flutamide and hydroxy-flutamide on the growth of human benign prostatic hyperplasia cells in primary culture: a preliminary report. Anticancer Res. 11:1799–1806; 1991.PubMedGoogle Scholar
  25. 25.
    Hayward, S.; Cox, S.; Mitchell, I., et al. The effects of interferons on the activity ofα-glycerolphosphate dehydrogenase in benign prostatic hyperplasia cells in primary culture. J. Urol. 138:648–653; 1987.PubMedGoogle Scholar
  26. 26.
    Hayward, S. W. The role of stroma in prostate epithelial function: development of a model system. London: Council for National Academic Awards; 1992. Thesis.Google Scholar
  27. 27.
    Hayward, S. W.; Del Buono, R.; Hall, P. A., et al. A functional model of human prostate epithelium: the role of androgens and stroma in architectural organisation and the maintenance of differentiated secretory function. J. Cell Sci. 102:361–372; 1992.PubMedGoogle Scholar
  28. 28.
    He, W. W.; Kumar, M. V.; Tindall, D. J. A frameshift mutation in the androgen receptor gene causes complete androgen insensitivity in the testicular-feminized mouse. Nucleic Acids Res. 19:2373–2378; 1991.PubMedCrossRefGoogle Scholar
  29. 29.
    Horoszewicz, J. S.; Leong, S. S.; Ming, Chu T., et al. The LNCaP cell line—a new model for studies on human prostatic carcinoma. Prog. Clin. Biol. Res. 37:115–132; 1980.PubMedGoogle Scholar
  30. 30.
    Husmann, D. A.; McPhaul, M.; Wilson, J. D. Androgen receptor expression in the developing rat prostate is not altered by castration, flutamide, or suppression of the adrenal axis. Endocrinology 128:1902–1906; 1991.PubMedGoogle Scholar
  31. 31.
    Isaacs, J. T. Development and characteristics of the available animal model systems for the study of prostatic cancer. In: Coffey, D. S.; Bruchovsky, N.; Gardner, W. W., Jr., et al., eds. Current concepts and approaches to the study of prostate cancer. New York: A. R. Liss; 1987:513–576.Google Scholar
  32. 32.
    Isaacs, J. T.; Barrack, E. R.; Isaacs, W. B., et al. The relationship of cellular structure and function: the matrix system. In: Murphy, G. P.; Sandberg, A. A.; Karr, J. P., eds. The prostatic cell: structure and function. New York: Alan R. Liss; 1981:1–24.Google Scholar
  33. 33.
    Jones, E.; Harper, M. Studies on the proliferation, secretory activities, and epidermal growth factor receptor expression in benign prostatic hyperplasia explant cultures. Prostate 20:133–149; 1992.PubMedCrossRefGoogle Scholar
  34. 34.
    Kaighn, M. E.; Lechner, J. F.; Babcock, M. S., et al. The Pasadena cell lines. Prog. Clin. Biol. Res. 37:85–109; 1980.PubMedGoogle Scholar
  35. 35.
    Kishi, H.; Ishibe, T.; Usui, T., et al. Epidermal growth factor (EGF) in seminal plasma and prostatic gland: a radioreceptor assay. Arch. Androl. 20:243–249; 1988.PubMedGoogle Scholar
  36. 36.
    Kissane, J. M., editor. Andersons pathology, 7th edition. Saint Louis, MO: Mosby; 1985.Google Scholar
  37. 37.
    Kyprianou, N.; Isaacs, J. T. Identification of a cellular receptor for transforming growth factor-beta in rat ventral prostate and its negative regulation by androgens. Endocrinology 123:2124–2131; 1988.PubMedGoogle Scholar
  38. 38.
    Kyprianou, N.; Isaacs, J. T. Expression of transforming growth factor-β in the rat ventral prostate during castration-induced programmed cell death. Mol. Endocrinol. 3:1515–1522; 1989.PubMedCrossRefGoogle Scholar
  39. 39.
    Lin, J.-Y.; Simmons, D. T. The ability of large T antigen to complex with p53 is necessary for the increased life span and partial transformation of human cells by simian virus 40. J. Virol. 65:6447–6453; 1991.PubMedGoogle Scholar
  40. 40.
    Ludlow, J. W. Interactions between SV40 large-tumor antigen and the growth suppressor proteins pRB and p53. FASEB J. 7:866–871; 1993.PubMedGoogle Scholar
  41. 41.
    MacDonald, A.; Chisholm, G. D.; Habib, F. K. Production and response of a human prostatic cancer line to transforming growth factor-like molecules. Br. J. Cancer 62:579–584; 1990.PubMedGoogle Scholar
  42. 42.
    Maddy, S.; Chisholm, G.; Busuttil, A., et al. Epidermal growth factor receptors in human prostate cancer: correlation with histological differentiation of the tumour. Br. J. Cancer 60:41–44; 1989.PubMedGoogle Scholar
  43. 43.
    Martikainen, P. M.; Mäkelä, S. I.; Santti, R. S. S., et al. Interaction of male and female sex hormones in cultured rat prostate. Prostate 11:291–303; 1988.Google Scholar
  44. 44.
    Massagué, J. Transforming growth factor-α: a model for membrane-anchored growth factors. J. Biol. Chem. 265:21393–21396; 1990.PubMedGoogle Scholar
  45. 45.
    McKeehan, W. L. Growth factor receptors and prostate cell growth. In: Isaacs, J. T., ed. Prostate cancer: cell and molecular mechanisms in diagnosis and treatment. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1991:165–176.Google Scholar
  46. 46.
    McKeehan, W. L.; Adams, P. S. Heparin-binding growth factor/prostatropin attenuates inhibition of rat prostate tumor epithelial cell growth by transforming growth factor type beta. In Vitro Cell. Dev. Biol. 24:243–246; 1988.PubMedCrossRefGoogle Scholar
  47. 47.
    McKeehan, W. L.; Adams, P. S.; Rosser, M. P. Direct mitogenic effects of insulin, epidermal growth factor, glucocorticoid, cholera toxin, unknown pituitary factors and possibly prolactin, but not androgen, on normal rat prostate epithelial cells in serum-free, primary cell culture. Cancer Res. 44:1998–2010; 1984.PubMedGoogle Scholar
  48. 48.
    McNeal, J. E. Prostate anatomy and BPH morphogenesis. Prog. Clin. Biol. Res. 145:27–54; 1984.PubMedGoogle Scholar
  49. 49.
    Merchant, D. J.; Clarke, S. M.; Ives, K., et al. Primary explant culture: an in vitro model of the human prostate. Prostate 4:523–542; 1988.CrossRefGoogle Scholar
  50. 50.
    Mickey, D. D.; Stone, K. R.; Wunderli, H., et al. Characterization of a human prostate adenocarcinoma cell line (DU145) as a monolayer culture and as a solid tumour in athymic mice. Prog. Clin. Biol. Res. 37:67–84; 1980.PubMedGoogle Scholar
  51. 51.
    Montpetit, M.; Abrahams, P.; Clark, A. F., et al. Androgen-independent epithelial cells of the rat ventral prostate. Prostate 12:13–28; 1988.PubMedCrossRefGoogle Scholar
  52. 52.
    Mori, H. M.; Maki, K.; Oishi, M., et al. Increased expression of genes for basic fibroblast growth factor and transforming growth factor typeβ2 in human benign prostatic hyperplasia. Prostate 16:71–80; 1990.PubMedCrossRefGoogle Scholar
  53. 53.
    Morris, G.; Dodd, J. Epidermal growth factor receptor mRNA levels in human prostatic tumors and cell lines. J. Urol. 143:1272–1274; 1990.PubMedGoogle Scholar
  54. 54.
    Narayan, P.; Dahiya, R. Establishment and characterization of epithelial cell line from human prostatic adenocarcinoma (ND-1). J. Urol. 148:1600–1604; 1992.PubMedGoogle Scholar
  55. 55.
    Neubauer, B. L.; Chung, L. W. K.; McCormick, K. A., et al. Epithelial-mesenchymal interactions in prostatic development. II. Biochemical observations of prostatic induction by urogenital sinus mesenchyme in epithelium of the adult rodent urinary bladder. J. Cell. Biol. 96:1671–1676; 1983.PubMedCrossRefGoogle Scholar
  56. 56.
    Nurcombe, V.; Ford, M. D.; Wildschut, J. A., et al. Developmental regulation of neural response to FGF-1 and FGF-2 by heparan sulfate proteoglycan. Science 260:103–106; 1993.PubMedCrossRefGoogle Scholar
  57. 57.
    Orlowski, J.; Clark, A. F. Epithelial-stromal interactions in the regulation of rat ventral prostate function: identification and characterisation of pathways for androgen metabolism in isolated cell types. Endocrinology 128:872–884; 1991.PubMedGoogle Scholar
  58. 58.
    Partanen, A. M. Epidermal growth factor and transforming growth factor-α in the development of epithelial-mesenchymal organs of the mouse. Curr. Topics Dev. Biol. 24:31–55; 1990.CrossRefGoogle Scholar
  59. 59.
    Peehl, D. M.; Stamey, T. A. Growth responses of normal, benign hyperplastic, and malignant human prostatic epithelial cells in vitro to cholera toxin, pituitary extract, and hydrocortizone. Prostate 8:51–61; 1986.PubMedCrossRefGoogle Scholar
  60. 60.
    Peehl, D. M.; Stamey, T. A. Serum-free growth of adult human prostatic epithelial cells. In Vitro Cell. Dev. Biol. 22:82–90; 1986.PubMedCrossRefGoogle Scholar
  61. 61.
    Sambrook, J.; Fritsch, E.; Maniatis, T. Molecular cloning: a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Press; 1989.Google Scholar
  62. 62.
    Sandberg, A. A. Chromosomal abnormalities and related events in prostate cancer. Human Pathol. 23:368–380; 1992.CrossRefGoogle Scholar
  63. 63.
    St Arnaud, R.; Poyet, P.; Walder, P., et al. Androgens modulate epidermal growth factor receptor levels in the rat ventral prostate. Mol. Cell. Endocrinol. 56:21–27; 1988.PubMedCrossRefGoogle Scholar
  64. 64.
    Steiner, M. S. Role of peptide growth factors in the prostate: a review. Urology 42:99–110; 1993.PubMedCrossRefGoogle Scholar
  65. 65.
    Sunde, A.; Rosness, P. A.; Eik-Nes, K. B. Metabolism of 5α-androstane-3β, 17β-diol to 17β-hydroxy-5α-androstan-3α, 17β-diol in the rat. Biochem. Biophys. Acta 574:240–247; 1979.PubMedGoogle Scholar
  66. 66.
    Traish, A. M.; Wotiz, H. H. Prostatic epidermal growth factor receptors and their regulation by androgens. Endocrinology 121:1461–1467; 1987.PubMedCrossRefGoogle Scholar
  67. 67.
    Verhagen, A. P. M.; Aalders, T. W.; Ramaekers, F. C. S., et al. Differential expression of keratins in the basal and luminal compartments of rat prostatic epithelium during degeneration and regeneration. Prostate 13:25–38; 1988.PubMedCrossRefGoogle Scholar
  68. 68.
    Vindelov, L.; Christensen, I. J.; Nissen, N. I. A detergent-trypsin method for the preparation of nuclei for flow cytometric DNA analysis. Cytometry 3:323–327; 1983.PubMedCrossRefGoogle Scholar
  69. 69.
    Voigt, K. D.; Bartsch, W. The role of tissue steroids in benign hyperplasia and prostate cancer. Urology A 26:349–357; 1987.Google Scholar
  70. 70.
    Walsh, P. C. Human benign prostatic hyperplasia: etiological considerations. Prog. Clin. Biol. Res. 145:1–26; 1984.PubMedGoogle Scholar
  71. 71.
    Wilson, J. D.; Gloyna, R. E. The intranuclear metabolism of testosterone in the accessory organs of reproduction. Rec. Prog. Horm. Res. 26:309–336; 1970.PubMedGoogle Scholar

Copyright information

© Society for In Vitro Biology 1995

Authors and Affiliations

  • S. W. Hayward
    • 1
  • R. Dahiya
    • 2
  • G. R. Cunha
    • 1
  • J. Bartek
    • 4
  • N. Deshpande
    • 3
  • P. Narayan
    • 2
  1. 1.Department of AnatomyUniversity of CaliforniaSan Francisco, San Francisco
  2. 2.Department of UrologyUniversity of CaliforniaSan Francisco, San Francisco
  3. 3.Department of SurgeryLuton and Dunstable HospitalLutonU.K.
  4. 4.Danish Cancer SocietyDivision for Cancer BiologyCopenhagen ØDenmark

Personalised recommendations