In Vitro Cellular & Developmental Biology - Animal

, Volume 30, Issue 9, pp 596–603

Establishment and characterization of immortalized clonal cell lines from fetal rat mesencephalic tissue

  • Kedar N. Prasad
  • Erika Carvalho
  • Susan Kentroti
  • Judith Edwards-Prasad
  • Curt Freed
  • Antonia Vernadakis
Cellular Models

Summary

This investigation reports for the first time the establishment of immortalized clones of dopamine-producing nerve cells in culture. Freshly prepared single-cell suspensions from fetal (12-day-old) rat mesencephalic tissue were transfected with plasmid vectors, pSV3neo and pSV5neo, using an electroporation technique. Cells were plated in tissue culture dishes which were precoated with a special substrate and contained modified MCDB-153 growth medium with 10% heat inactivated fetal bovine serum. The immortalized cells were selected by placing the transfected cells in a selection medium (modified MCDB-153 containing 400µg/ml geneticin). The survivors showed the presence of T-antigens and were non-tumorigenic. Two cell lines, 1RB3 derived from cells transfected with pSV3neo, and 2RB5 derived from cells transfected with pSV3neo, revealed only 1 to 2% tyrosine hydroxylase (TH)-positive cells. Repeated single-cell cloning of these cell lines by a standard technique failed to increase the number of TH-positive cells in any clones. Using three cycles of growth, alternating between hormone-supplemented, serum-free medium and serum-containing medium produced a cell line (1RB3A) that was very rich in TH-positive cells. The recloning of 1RB3A yielded clones some of which contained over 95% TH-positive cells. These cells produced homovanillic acid, a metabolite of dopamine, and may be useful not only for neural transplant but also for basic neurobiological studies.

Key words

immortalization dopamine-producing cells homovanillic acid T-antigens tyrosine hydroxylase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, G. S.; Burns, R. S.; Tulpan, N. B., et al. Adrenal medullary transplantation to the caudate nucleus in Parkinson’s disease: initial clinical results in 18 patients. Arch. Neurol. 46:487–491; 1989.PubMedGoogle Scholar
  2. 2.
    Bakay, R. A. E.; Barrow, D. L.; Fiandaca, M. S., et al. Biochemical and behavioral correction of MPTP-like syndrome by fetal cell transplantation. Ann. NY Acad. Sci. 495:623–640; 1987.PubMedCrossRefGoogle Scholar
  3. 3.
    Bartelett, P. F.; Reid, H. H.; Bailey, K. A., et al. Immortalization of mouse neural precursor cells by the c-myc oncogene. Proc. Natl. Acad. Sci. USA 85:3255–3259; 1988.CrossRefGoogle Scholar
  4. 4.
    Bernard, O.; Reid, H. H.; Bartlett, P. F. Role of the c-myc and the N-myc oncogenes in the immortalization of neural precursors. J. Neurosci. Res. 24:9–20; 1989.PubMedCrossRefGoogle Scholar
  5. 5.
    Bjorklund, A.; Stenevi, U. Reconstruction of the nigrostriatial dopamine pathway by intracerebral nigral transplants. Brain Res. 177:555–560; 1979.PubMedCrossRefGoogle Scholar
  6. 6.
    Bohn, M. C.; Cupit, L.; Marciano, F., et al. Adrenal medulla graft enhanced recovery of striatal dopaminergic fibers. Science 237:913–916; 1987.PubMedCrossRefGoogle Scholar
  7. 7.
    Bottenstein, J. E.; Sato, G. H. Growth of a rat neuroblastoma cell line in serum free supplemented medium. Proc. Natl. Acad. Sci. USA 76:514–517; 1979.PubMedCrossRefGoogle Scholar
  8. 8.
    Choi, H. K.; Won, I. A.; Kontur, P. I., et al. Immortalization of embryonic mesencephalic dopaminergic neurons by somatic cell fusion. Brain Res. 552:67–76; 1991.PubMedCrossRefGoogle Scholar
  9. 9.
    Dunnett, S. B.; Annett, L. E. Nigral transplants in primate model of Parkinsonism. In: Lindvall, O., Bjorklund, A., Widner, H., eds. Intracerebral transplantation in movement disorders, vol. 4. Restorative neurology and neuroscience. Amsterdam: Elsevier; 1991:27–51.Google Scholar
  10. 10.
    Dunnett, S. B.; Hernandez, T.; Summerfield, A., et al. Graft-derived recovery from 6-0HDA lesions: specificity of ventral mesencephalic graft tissues. Exp. Brain Res. 71:411–424; 1988.PubMedCrossRefGoogle Scholar
  11. 11.
    Evrard, C.; Borde, I.; Marin, P., et al. Immortalization of bipotential and plastic glia—neuronal precursor cells. Proc. Natl. Acad. Sci. USA 87:3062–3066; 1990.PubMedCrossRefGoogle Scholar
  12. 12.
    Freed, C. R.; Breeze, R. E.; Rosenberg, N. L., et al. Transplantation of human fetal dopamine cells for Parkinson’s disease. Arch. Neurol. 47:505–512; 1990.PubMedGoogle Scholar
  13. 13.
    Freed, C. R.; Breeze, T. E.; Rosenberg, N. L., et al. Survival of implanted fetal dopamine cells and neurological improvement 12 to 46 months after transplantation for Parkinson’s disease. N. Engl. J. Med. 327:1549–1555; 1992.PubMedCrossRefGoogle Scholar
  14. 14.
    Freed, W. J.; Poltorak, N.; Becker, J. B. Intracerebral adrenal medulla grafts: a review. Exp. Neurol. 110:39–166; 1990.CrossRefGoogle Scholar
  15. 15.
    Galiana, E.; Borde, I.; Marin, P., et al. Establishment of permanent astroglia cell lines, able to differentiate in vitro, from transgenic mice carrying the polyoma virus large T-gene: An alternative approach to brain cell immortalization. J. Neurosci. Res. 26:269–277; 1990.PubMedCrossRefGoogle Scholar
  16. 16.
    Gash, D. M.; Collier, T. J.; Sladek, J. R., Jr. Neural transplantation: a review of recent developments and potential application to aged brain. Neurobiol. Aging 6:131–150; 1985.PubMedCrossRefGoogle Scholar
  17. 17.
    Goetz, C. G.; Olanow, C. W.; Koller, W. C., et al. Multicenter study of autologous adrenal medullary transplantation to the corpus striatum in patients with advanced Parkinson’s disease. N. Engl. J. Med. 320:337–341; 1989.PubMedCrossRefGoogle Scholar
  18. 18.
    Henderson, B. T. H.; Clough, C. G.; Hughes, R. C., et al. Implantation of human fetal ventral mesencephalon to the right caudate nucleus in advanced Parkinson’s disease. Arch. Neurol. 48:822–827; 1991.PubMedGoogle Scholar
  19. 19.
    Kentroti, S.; Vernadakis, A. Growth hormone—releasing hormone influences neural expression in the developing chick brain. I. Catecholaminergic neurons. Dev. Brain Res. 49:275–280; 1989.CrossRefGoogle Scholar
  20. 20.
    Kordower, J. H.; Fiandaca, M. S.; Notter, M. F. D., et al. Scientific basis for dopaminergic brain grafting. In: Koller, W. C.; Paulson, G., eds. Therapy of Parkinson’s disease. New York: Marcel Dekker, Inc.; 1990:443–472.Google Scholar
  21. 21.
    La Rosa, F. G.; Talmage, D. W. Major histocompatability complex antigen expression on parenchymal cells of thyroid allografts is not by itself sufficient to induce rejection. Transplantation 49:605–609; 1990.PubMedCrossRefGoogle Scholar
  22. 22.
    Lechner, J. F.; LaVeek, M. A. A serum-free method for culturing normal human bronchial epithelial cells at clonal density. J. Tissue Cult. Methods 9:43–48; 1985.CrossRefGoogle Scholar
  23. 23.
    Lindvall, O.; Rehncrona, S.; Brundin, P., et al. Human fetal dopamine neurons grafted into striatum in two patients with severe Parkinson’s disease. Arch. Neurol. 46:615–631; 1989.PubMedGoogle Scholar
  24. 24.
    Lindvall, O.; Backlund, E-O.; Farde L., et al. Transplantation in Parkinson’s disease: two cases of adrenal medullary grafts to the putamen. Ann. Neurol. 22:457–468; 1987.PubMedCrossRefGoogle Scholar
  25. 25.
    Lindvall, O.; Brundin, P.; Widner, H., et al. Graft of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 247:547–577; 1990.CrossRefGoogle Scholar
  26. 26.
    Lindvall, O.; Widner, H.; Rehncrona, S., et al. Transplantation of fetal dopamine neurons in Parkinson’s disease: one-year clinical and neurophysiological observations in two patients with putaminal implants. Ann. Neurol. 31:155–165; 1992.PubMedCrossRefGoogle Scholar
  27. 27.
    Lowry, O. H.; Rosebrough, N. J.; Farr, A. L., et al. Protein measurement with Folin Phenol reagent. J. Biol. Chem. 193:265–275; 1951.PubMedGoogle Scholar
  28. 28.
    Madrazo, I.; Leon, V.; Torres, C., et al. Transplantation of fetal substantia nigra and adrenal medulla to the caudate nucleus in two patients with Parkinson’s disease. N. Engl. J. Med. 318:51; 1988.PubMedGoogle Scholar
  29. 29.
    Madrazo, I.; Drucker-Colin, R.; Diaz, B., et al. Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson’s disease. N. Engl. J. Med. 316:831–834; 1987.PubMedCrossRefGoogle Scholar
  30. 30.
    Madrazo, I.; Franco-Bourland, R.; Ostrosky-Solis, F., et al. Fetal homotransplants (ventral mesencephalon and adrenal tissue) to the striatum of Parkinsonian subjects. Arch. Neurol. 48:1281–1285; 1990.Google Scholar
  31. 31.
    Masserano, J. M.; Takimoto, A. S.; Weiner, N. Tyrosine hydroxylase activity in the brain and adrenal gland of rats following chronic administrations of ethanol. Alcohol Clin. Exp. Res. 7:294–298; 1983.PubMedGoogle Scholar
  32. 32.
    Mugele, K.; Kugler, H.; Spiess, J. Immortalization of a fetal rat brain cell line that expresses corticotropin releasing factor mRNA. DNA Cell Biol. 12:119–126; 1993.PubMedCrossRefGoogle Scholar
  33. 33.
    Prasad, K. N. Differentiation of neuroblastoma cells: a useful model for neurobiology and cancer. Biol. Rev. 66:431–451; 1991.PubMedGoogle Scholar
  34. 34.
    Prasad, K. N.; Carvalho, E.; Kentroti, S., et al. Production of terminally differentiated neuroblastoma cells in culture. Rest. Neurol. Neurosci. In press; 1994.Google Scholar
  35. 35.
    Prasad, K. N.; Kentroti, S.; Edwards-Prasad, J., et al. Modification of the expression of adenosine 3′, 5′-cyclic monophosphate—induced differentiated functions in neuroblastoma cells by beta-carotene and d-alpha-tocopheryl succinate. J. Am. Coll. Nutr. (In press); 1994.Google Scholar
  36. 36.
    Perlow, M. J.; Freed, W. J.; Hoffer, B. J., et al. Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science 204:643–647; 1979.PubMedCrossRefGoogle Scholar
  37. 37.
    Pirisi, L.; Yasumoto, S.; Feller, M., et al. Transformation of human fibroblasts and keratinocytes with human papilloma virus type 16 DNA. J. Virol. 61:1061–1066, 1987.PubMedGoogle Scholar
  38. 38.
    Sawle, G. V.; Bloomfield, P. M.; Bjorklund, A., et al. Transplantation of fetal dopamine neurons in Parkinson’s disease: PET (18F)-6-l-fluorodopa studies in two patients with putaminal implants. Ann. Neurol. 31:166–173; 1992.PubMedCrossRefGoogle Scholar
  39. 39.
    Southern, P. J.; Berg, P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Mol. Appl. Genet. 1:327–341; 1982.PubMedGoogle Scholar
  40. 40.
    Sternberger, L. A.; Hardy, P. H., Jr.; Cuculis, J. J., et al. Unlabeled antibody-enzyme method of immunocytochemistry. Preparations and properties of soluble antigen-antibody complex (horse radish peroxidase-anti-horse radish peroxidase) and its use in the identification of spirochetes. J. Histochem. Cytochem. 18:315–333; 1970.PubMedGoogle Scholar
  41. 41.
    Tandon, P. N.; Gopinath, G.; Mahapatra, A. K., et al. Neural transplantation in mammals: our experience. Proc. Indian Acad. Sci. B56:551–558; 1990.Google Scholar
  42. 42.
    Widner, H.; Brundin, P. Immunological aspects of grafting in the mammalian central nervous system. A review and speculative synthesis. Brain Res. Rev. 13:287–324; 1988.CrossRefGoogle Scholar
  43. 43.
    Yurek, D.; Sladek, J. R., Jr. Dopamine cell replacement: Parkinson’s disease. Ann. Rev. Neurosci. 13:415–440; 1989.CrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 1994

Authors and Affiliations

  • Kedar N. Prasad
    • 1
  • Erika Carvalho
    • 1
  • Susan Kentroti
    • 2
  • Judith Edwards-Prasad
    • 1
  • Curt Freed
    • 3
  • Antonia Vernadakis
    • 2
  1. 1.Center for Vitamins and Cancer Research, School of MedicineUniversity of Colorado Health Sciences CenterDenver
  2. 2.Department of Pharmacology and Psychiatry, School of MedicineUniversity of Colorado Health Sciences CenterDenver
  3. 3.Department of Medicine, School of MedicineUniversity of Colorado Health Sciences CenterDenver

Personalised recommendations