Hormonal effects on insects and other endoparasites in vitro

  • Pauline O. Lawrence
TCA Session-In-Depth Invertebrate Cell Culture

Summary

Metamorphic and reproductive events in vertebrates and invertebrates are under endocrine control and are often correlated with developmental, behavioral, or reproductive changes in the parasites living in or on these hosts. This paper reviews selected examples ofa) host hormone mediated influences on endoparasites in vivo,b) host hormone effects in vitro on protozoan, helminth, and insect endoparasites, andc) identifies possible relationships in hormone effects across parasite taxa. The significance of studies on endoparasites in vitro in relation to the impact of host hormones, antihelminthic, and prophylactic drugs on parasite growth and proliferation will also be addressed. A review of the literature indicates only limited studies have been done in vitro in an attempt to elucidate the bases of reported host hormone influences on endoparasites in vivo. Steroid hormones of hosts seem to stimulate growth, molting or encystment or both of helminth, insect, and protozoan parasites. Vertebrate steroids such as estrogen, testosterone, and progesterone had primarily reproduction- or growth-promoting effects or both on protozoan and nematode parasites. Insect ecdysteroids such as ecdysone, 20-hydroxyecdysone, and makisterone were the most widely studied steroids in vitro and induced growth or molting or both of cestode, nematode, and insect parasite larvae. Although juvenile hormone (JH III) stimulated growth in the protozoan and nematode parasites tested, the analogue methoprene and JH precursors, farnesal, farnesol, and farnesol methyl ether had various effects. Biogenic amines also varied in their effects on the nematode parasites tested, while the peptide hormone, insulin, stimulated growth in the protozoans tested. The evidence for in vitro effects of host hormones on their natural endoparasites is patchy at best. Additional studies are needed to identify the biochemical bases for the numerous host hormone mediated effects on parasites.

Key words

hormone effects parasites in vitro insect parasites helminths parasitoids protozoa hormones 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alberts, B.; Bray, D.; Lewis, J., et al. Molecular biology of the cell. New York: Garland Publishing, Inc.; 1983:717–765.Google Scholar
  2. 2.
    Andrews, P.; Thomas, H.; Weber, H. The in vitro uptake of14C-praziquantel by cestodes, trematodes, and a nematode. J. Parasitol. 66:920–925; 1980.PubMedCrossRefGoogle Scholar
  3. 3.
    Baronio, P.; Senhal, F. Dependence of the parasitoidGonia cinerascens on the hormones of its lepidopterous hosts. J. Insect Physiol. 26:619–626; 1980.CrossRefGoogle Scholar
  4. 4.
    Basch, P. F. Cultivation ofSchistosoma mansoni in vitro. I. Establishment of cultures from cercariae and development until pairing. J. Parasitol. 67:179–185; 1981.PubMedCrossRefGoogle Scholar
  5. 5.
    Beckage, N. E. Endocrine interactions between endoparasitic insects and their hosts. Ann. Rev. Entomol 30:371–413; 1985.CrossRefGoogle Scholar
  6. 6.
    Beckage, N. E.; Riddiford, L. M. Effects of parasitism byApanteles congregatus on the endocrine physiology of the tobacco hornwormManduca sexta. Gen. Comp. Endocrinol. 47:308–322; 1982.PubMedCrossRefGoogle Scholar
  7. 7.
    Boisvenue, R. J.; Emmick, T. L.; Galloway, R. B.Haemonchus contortus: effects of compounds with juvenile hormone activity on the in vitro development of infective larvae. Exp. Parasitol. 42:67–72; 1977.PubMedCrossRefGoogle Scholar
  8. 8.
    Bollenbacher, W. The interendocrine regulation of larval-pupal development in the tobacco hornworm,Manduca sexta: a model. J. Insect Physiol. 34:941–947; 1988.CrossRefGoogle Scholar
  9. 9.
    Brown, J. J.; Ahl, J.; Reed-Larsen, D. Endocrine communication between a host and its endoparasitoid in relationship to dormancy. In: Sehnal, F.; Zabza, A.; Denlinger, D. L., eds. Endocrinological frontiers in physiological insect ecology. Wroclaw, Poland: Wroclaw Technical University Press; 1988:443–447.Google Scholar
  10. 10.
    Brueggemeier, R. W.; Yocum, G. D.; Denlinger, D. L. Estranes, androstanes and pregnanes in insects and other invertebrates. In: Sehnal, F.; Zabza, A.; Denlinger, D. L., eds. Endocrinological frontiers in physiological insect ecology. Wroclaw, Poland: Wroclaw Technical University Press; 1988:885–898.Google Scholar
  11. 11.
    Cheng, T. C. General parasitology. New York: Academic Press; 1986:1–827.Google Scholar
  12. 12.
    Clark, T. B.; Kellen, W. R.; Lindegren, J. E., et al. The transmission ofCrithidia fasciculata (Leger, 1902), inCuliseta incidens (Thomson). J. Protozool. 11:400–402; 1964.PubMedGoogle Scholar
  13. 13.
    Cleveland, L. R. Effects of insect hormones on protozoaCryptocercus and termites. In: Stauber, L. A., ed. Host influences on parasite physiology. New Brunswick: Rutgers University Press; 1960:5–10.Google Scholar
  14. 14.
    Csaba, G.; Fulop, K. Steroid hormone (prednisolone) influence on the unicellularTetrahymena (an electron microscope study). Acta Protozool. 26:233–236; 1987.Google Scholar
  15. 15.
    Csaba G.; Lantos, T. Effect of insulin on glucose uptake ofTetrahymena. Experientia 31:1097–1098; 1975.PubMedCrossRefGoogle Scholar
  16. 16.
    Csaba G.; Lantos, T. Effect of hormones on Protozoa: Studies on the phagocytic effect of histamine, 5-hydroxytryptamine and indoleacetic acid inTetrahymena pyriformis. Cytobiologie 7:361–365; 1973.Google Scholar
  17. 17.
    Csaba, G.; Inczefi-Gonda, A.; Feher, T. Induction of steroid binding sites (receptors) and presence of steroid hormones in the unicellularTetrahymena pyriformis. Comp. Biochem. Physiol. 82:567–570; 1985.CrossRefGoogle Scholar
  18. 18.
    Davey, K. G. Endocrinology of nematodes. In: Laufer, H.; Downer, R. G. H., eds. Endocrinology of selected invertebrate types. New York: Alan Liss; 1988:63–86.Google Scholar
  19. 19.
    Davey, K. G. Molting in a parasitic nematode,Phocanema decipiens. VI. The mode of action of insect juvenile hormone and farnesyl methyl ether. Int. J. Parasitol. 1:61–66; 1971.PubMedCrossRefGoogle Scholar
  20. 20.
    Dennis, R. D. Insect morphogenetic hormones and developmental mechanisms in the nematode,Nematospiroides dubius. Comp. Biochem. Physiol. 53:53–56; 1976.CrossRefGoogle Scholar
  21. 21.
    El Mofty, M. M.; Smyth, J. D. Endocrine control of encystation inOpalina ranarum parasitic inRana temporaria. Exp. Parasitol. 15:185–199; 1964.CrossRefGoogle Scholar
  22. 22.
    El Mofty, M. M.; Sadek, I. A. The mechanism of action of adrenaline in the induction of sexual reproduction (encystation) inOpalina sudafricana parasitic inBufo regularis. Int. J. Parasitol. 3:425–431; 1973.CrossRefGoogle Scholar
  23. 23.
    Englemann, F. Endocrine regulated insect vitellogenesis: a synthesis. In: Porchet, M.; Andries, J.; Dhainaut, A., eds. Advances in invertebrate reproduction 4. New York: Elsevier Science Publications; 1986:31–47.Google Scholar
  24. 24.
    Fioravanti, C. F.; McInnis, A. J. The in vitro effects of farnesol and derivatives onHymenolepis diminuta. J. Parasitol. 62:749–755; 1976.PubMedCrossRefGoogle Scholar
  25. 25.
    Fleming, M. W. Steroidal enhancement of growth in parasitic larvae ofAscaris suum: validation of a bioassay. J. Exp. Zool. 233:229–233; 1985.PubMedCrossRefGoogle Scholar
  26. 26.
    Fleming, M. W. Hormonal effects on the in vitro larval growth of the swine intestinal roundwormAscaris suum. Int. J. Invert. Reprod. Dev. 14:153–160; 1988.Google Scholar
  27. 27.
    Fleming, M. W.Ascaris suum: role of ecdysteroids in molting. Exp. Parasitol. 60:207–210; 1985.PubMedCrossRefGoogle Scholar
  28. 28.
    Freya, G. J.; Fairbairn, D. Lipid metabolism in helminth parasites VI. Synthesis of 2-cis, 6trans farnesol byHymenolepis diminuta (Cestoda). Comp. Biochem. Physiol. 28:1115–1124; 1962.Google Scholar
  29. 29.
    Hagedorn, H. H. The role of ecdysteroids in reproduction. In: Kerkut, G.; Gilbert, L. I., eds. Comprehensive insect physiology, biochemistry and pharmacology, vol. 8. New York: Pergamon Press; 1985:205–262.Google Scholar
  30. 30.
    Hitcho, P. J.; Thorson, R. E. Possible molting and maturation control inTrichinella spiralis. J. Parasitol. 57:787–793; 1971.PubMedCrossRefGoogle Scholar
  31. 31.
    Ilan, J.; Ilan, J.; Rickles, S. Inhibition of juvenile hormone of growth ofCrithidia fasciculata in culture. Nature 224:179–180; 1969.PubMedCrossRefGoogle Scholar
  32. 32.
    Injeyan, H. S.; Meerovitch, E. The effects of insect juvenile hormone on the growth of some protozoans in vitro. 1.Crithidia sp. J. Protozool 21:738–742; 1974.PubMedGoogle Scholar
  33. 33.
    Kerkut, G.; Gilbert, L. I. Comprehensive insect physiology, biochemistry and pharmacology, vol. 8. New York: Pergamon Press; 1985.Google Scholar
  34. 34.
    Kim, R.; Lukacs, J.; Tanaka, R. D., et al. Effects of hycanthone and praziquantel on monoamine oxidase and cholinesterases inSchistosoma mansoni. J. Parasitol. 67:20–23; 1981.PubMedCrossRefGoogle Scholar
  35. 35.
    Kowalski, J. C.; Thorson, R. E. Effects of certain lipid compounds on growth and asexual multiplication ofMesocestoides corti (Cestoda) tetrathyridia. Int. J. Parasitol. 6:327–331; 1976.PubMedCrossRefGoogle Scholar
  36. 36.
    Laufer, H. Comparisons of terpenoids in vertebrates and invertebrates. In: Sehnal, F.; Zabza, A.; Denlinger, D. L., eds. Endocrinological frontiers in physiological insect ecology. Wroclaw, Poland: Wroclaw Technical University Press; 1988:907–918.Google Scholar
  37. 37.
    Lawrence, P. O. Host-parasite hormonal interactions: an overview. J. Insect Physiol. 32:295–298; 1986.CrossRefGoogle Scholar
  38. 38.
    Lawrence, P. O. In vivo and in vitro development of first instars of the parasitic wasp,Biosteres longicaudatus (Hymenoptera: Braconidae). In: Gupta, V., ed. Advances in parasitic hymenoptera research. The Netherlands: E. J. Brill Publishing; 1988:351–366.Google Scholar
  39. 39.
    Lawrence, P. O. Intraspecific competition between larvae of the parasitic waspBiosteres longicaudatus. Oecologia 74:607–612; 1988.CrossRefGoogle Scholar
  40. 40.
    Lawrence, P. O. The role of 20-hydroxyecdysone in the moulting ofBiosteres longicaudatus, a parasite of the Caribbean fruit fly,Anastrepha suspensa. J. Insect Physiol. 32:329–337; 1986.CrossRefGoogle Scholar
  41. 41.
    Lawrence, P. O. Ecdysteroid titers and integument changes in superparasitized puparia ofAnastrepha suspensa (Diptera: Tephritidae). J. Insect Physiol. 34:603–608; 1988.CrossRefGoogle Scholar
  42. 42.
    Lawrence, P. O.; Hagedorn, H. H. Relationship between the ecdysteroid titres of a host and those of its parasite. Insect Biochem. 16:163–167; 1986.CrossRefGoogle Scholar
  43. 43.
    Lord, J. C.; Hall, D. W. Sporulation ofAmblyospora (Microspora) in femaleCulex salinarius: induction by 20-hydroxyecdysone. Parasitology 87:377–383; 1983.Google Scholar
  44. 44.
    Meerovitch, E. Studies on the in vitro axenic development ofTrichinella spiralis. II. Preliminary experiments on the effect of farnesol, cholesterol and an insect extract. Can. J. Zool. 43:81–85; 1965.Google Scholar
  45. 45.
    Nation, J. L. A new method using hexamethyl-disailazane for preparation of soft insect tissues for scanning electron microscopy. Stain Technol. 58:347–351; 1983.PubMedGoogle Scholar
  46. 46.
    Nenon, J. P. Culture in vitro des embryos d’un Hymenoptère endoparasite polyembryonnaire:Ageniaspis fuscicollis. Rôle des hormones de synthesis. C. R. Séanc. Acad. Sci. Paris Ser. D. 274:3409–3412; 1972.Google Scholar
  47. 47.
    Nirde, P.; Torpier, G.; Capron, A., et al. Ecdysteroids in schistosomes and host-parasite relationship. In: Hoffmann, J.; Porchet, M., eds. Biosynthesis, metabolism and mode of action of invertebrate hormones. Heidelberg: Springer-Verlag; 1984:331–337.Google Scholar
  48. 48.
    Nirde, P.; De Reggi, M. L.; Capron, A. Fundamental aspects and potential roles of ecdysteroids in schistosomes. An update overview. J. Chem. Ecol. 12:1863–1884; 1986.CrossRefGoogle Scholar
  49. 49.
    Ogura, N.; Kobayashi, M.; Yamomotoa, H. Filariasis 4. Critical period of molting from the 2nd to the 3rd stage in filarial larvae ofBrugia pahangi. J. Med. Sci. 8:74–82; 1981.Google Scholar
  50. 50.
    Plantevin, G.; Grenier, S.; Richard, G., et al. Larval development, developmental arrest, and hormone levels in the coupleGalleria mellonella (Lepidoptera-Pyralidae)Pseudoperichaeta nigrolineata (Diptera-Tachinidae). Arch. Insect. Biochem. Physiol. 3:457–469; 1986.CrossRefGoogle Scholar
  51. 51.
    Quinones-Maldonado, V.; Renaud, F. L. Effect of biogenic amines on phagocytosis inTetrahymena thermophila. J. Protozool. 34:435–438; 1987.PubMedGoogle Scholar
  52. 52.
    Rew, R. S.; Urban, J. F.; Douvres, F. W. Screen for anthelmintics, using larvae ofAscaris suum. Am. J. Vet. Res. 47:869–873; 1986.PubMedGoogle Scholar
  53. 53.
    Riddiford, L. M. Host hormones and insect parasites. In: Maramorosch, K.; Schoppe, R. E., eds. Invertebrate immunity. New York: Academic Press; 1975:339–353.Google Scholar
  54. 54.
    Rivas-Alcala, R.; Mackenzie, C. D.; Gomez-Rojo, E., et al. The effects of diethylcarbamazine, mebendazole and levamisole onOnchocerca volvulus in vitro. Tropenmed. Parasitol. 35:71–77; 1984.PubMedGoogle Scholar
  55. 55.
    Rogers, W. P. Juvenile and moulting hormones from nematodes. Parasitology 58:657–662; 1973.CrossRefGoogle Scholar
  56. 56.
    Sato, G.; Reid, L. Replacement of serum in cell cultures by hormones. In: Rickenberg, H. V., ed. Biochemistry and mode of action of hormones. Int. Rev. Biochem. 20:219–251; 1978.Google Scholar
  57. 57.
    Schoonhoven, L. M. Diapause and the physiology of host-parasite synchronization inBupalus piniarius (Geometridae) andEucarcelia rutilla Vill (Tachinidae). Arch. Neerl. Zool. 15:111–173; 1962.CrossRefGoogle Scholar
  58. 58.
    Shanta, C. S.; Meerovitch, E. Specific inhibition of morphogenesis inTrichinella spiralis by insect juvenile hormone mimics. Can. J. Zool. 48:617–620; 1970.PubMedCrossRefGoogle Scholar
  59. 59.
    Spindler, K-D.; Spindler-Barth, M.; Melhorn, H. Effects of the juvenile hormone antagonist precocene II and the moulting hormone 20-OH-ecdysone onLitomosoides carinii andDipetalonema viteae in vitro. Z. Parasitenkd. 72:837–841; 1986.PubMedCrossRefGoogle Scholar
  60. 60.
    Stanley-Samuelson, D. W.; Theisen, M. O.; Loher, W. Physiological roles of prostaglandins in insects and other invertebrates. In: Sehnal, F.; Zabza, A.; Denlinger, D. L., eds. Wroclaw, Poland: Wroclaw Technical University Press; 1988:919–936.Google Scholar
  61. 61.
    Takac, P.; Vyboh, P.; Kozanek, M. Estradiol, progesterone, testosteron and dihydrotestosterone concentrations in some tissues of cockroachNauphoeta cinerea. In: Sehnal, F.; Zabza, A.; Denlinger, D. L., eds. Endocrinological frontiers in physiological insect ecology. Wroclaw, Poland: Wroclaw Technical University Press; 1988:899–905.Google Scholar
  62. 62.
    Thorson, R. E.; Digenis, G. A.; Berntzen, A., et al. Biological activities of various lipid fractions fromEchinococcus granulosus scolices on in vitro cultures ofHymeoplepis diminuta. J. Parasitol. 54:970–973; 1968.PubMedCrossRefGoogle Scholar
  63. 63.
    Truman, J.; Riddiford, L. M. Invertebrate systems for the study of hormonal effects on behavior. In: Munson, P. L.; Diczfalusy, E.; Glover, J., et al., eds. Vitamins and hormones. New York: Academic Press; 1977:283–315.Google Scholar
  64. 64.
    VandeWaa, E. A.; Bennett, J. L.; Williams, J. F., et al. Anti-filaria effects of nine quinoline-containing drugs on adult filariae in vitro. J. Parasitol. 75:367–372; 1989.PubMedCrossRefGoogle Scholar
  65. 65.
    Wink, M.Trypanosoma theileri: in vitro cultivation in tsetse fly and vertebrate cell culture systems. Int. J. Parasitol. 9:585–589; 1979.PubMedCrossRefGoogle Scholar

Copyright information

© Tissue Culture Association 1991

Authors and Affiliations

  • Pauline O. Lawrence
    • 1
  1. 1.Department of ZoologyUniversity of FloridaGainesville

Personalised recommendations