Iron absorption by intestinal epithelial cells: 1. CaCo2 cells cultivated in serum-free medium, on polyethyleneterephthalate microporous membranes, as an in vitro model

  • Christine Halleux
  • Yves-Jacques Schneider
Regular Papers


Iron absorption by intestinal epithelial cells, passage onto plasmatic apotransferrin, and regulation of the process remain largely misunderstood. To investigate this problem, we have set up an in vitro model, consisting in CaCo2 cells (a human colon adenocarcinoma line, which upon cultivation displays numerous differentiation criteria of small intestine epithelial cells). Cells are cultivated in a serum-free medium, containing 1µg/ml insulin, 1 ng/ml epidermal growth factor, 10µg/ml albumin-linoleic acid, 100 nM hydrocortisone, and 2 nM T3 on new, transparent, Cyclopore polyethyleneterephthalate microporous membranes coated with type I collagen. Cells rapidly adhere, grow, and form confluent monolayers; after 15 days, scanning electron microscopy reveals numerous uniform microvilli. Domes, which develop on nonporous substrata, are absent on high porosity membranes. Culture medium from upper and lower compartments of microplate inserts and cell lysates were immunoprecipitated after labeling with [3H]glucosamine and leucine; analysis was done by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), followed by autoradiography. [3H]transferrin is found mainly in the lower compartment and in cells; [3H]apolipoprotein B is released in both compartments, and fibronectin almost entirely recovered in the lower compartment; [3H]transferrin receptors and ferritin are only present in cell lysates. Binding experiments also show that transferrin receptors are accessible from the lower compartment. These results suggest that CaCo2 cells, cultivated in synthetic medium on membranes of appropriate porosity, could provide an in vitro model of the intestinal barrier, with the upper compartment of the culture insert corresponding to the apical pole facing the intestinal lumen and the lower one to the basal pole in contact with blood.

Key words

CaCo2 cells iron absorption in vitro model serum-free microporous membranes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aboud-Pirak, E.; Sergent, T.; Otte-Slachmuylder, C., et al. Binding and endocytosis of a monoclonal antibody to a high molecular weight human milk fat globule membrane-associated antigen by cultured MCF-7 breast carcinoma cells. Cancer Res. 48:3188–3196; 1988.PubMedGoogle Scholar
  2. 2.
    Bothwell, T. H.; Charlton, R. W.; Cook, J. D., et al. Iron metabolism in man. Oxford: Blackwell; 1979.Google Scholar
  3. 3.
    Burnham, D. B.; Fondacaro, J. D. Secretagogue-induced protein phosphorylation and chloride transport in CaCo-2 cells. Am. J. Physiol. 256:G808-G816; 1989.PubMedGoogle Scholar
  4. 4.
    Chantret, I.; Barbat, A.; Dussaulx, E., et al. Epithelial polarity, villin expression, and enterocytic differentiation of cultured human colon carcinoma cells: a survey of twenty cell lines. Cancer Res. 48:1936–1942;1988.PubMedGoogle Scholar
  5. 5.
    Crichton, R. R.; Charloteaux-Wauters, M. Iron transport and storage. Eur. J. Biochem. 164:485–506; 1987.PubMedCrossRefGoogle Scholar
  6. 6.
    Eilers, U.; Klumperman, J.; Hauri, H.-P. Nocodazole, a microtubuleactive drug, interferes with apical protein delivery in cultured intestinal epithelial cells (CaCo-2). J. Cell Biol. 108:13–22; 1989.PubMedCrossRefGoogle Scholar
  7. 7.
    Faust, R. A.; Albers, J. J. Regulated vectorial secretion of cholesteryl ester transfer protein (LTP-I) by the CaCo-2 model of human enterocyte epithelium. J. Biol. Chem. 263:8786–8789; 1988.PubMedGoogle Scholar
  8. 8.
    Godefroy, O.; Huet, C.; Blair, L. A. C., et al. Differentiation of a clone from the HT29 cell line: polarized distribution of histocompatibility antigens (HLA) and of transferrin receptors. Biol. Cell. 63:41–55; 1988.PubMedCrossRefGoogle Scholar
  9. 9.
    Halleux, C.; Schneider, Y.-J. Iron absorption by human CaCo2 cells, used as a model of the intestinal barrier. Arch. Int. Physiol. Biochim. 98:B75; 1990.Google Scholar
  10. 10.
    Hidalgo, I. J.; Raub, T. J.; Borchardt, R. T. Characterization of the human colon carcinoma cell line (CaCo-2) as a model system for intestinal epithelial permeability. Gastroenterology 96:736–749; 1989.PubMedGoogle Scholar
  11. 11.
    Hidalgo, I. J.; Kato, A.; Borchardt, R. T. Binding of epidermal growth factor by human colon carcinoma cell (CaCo-2) monolayers. Biochem. Biophys. Res. Comm. 160:317–324; 1989.PubMedCrossRefGoogle Scholar
  12. 12.
    Hughes, T. E.; Vodek Sasak, W.; Ordovas, J. M., et al. A novel cell line (CaCo-2) for the study of intestinal lipoprotein synthesis. J. Biol. Chem. 262:3762–3767; 1987.PubMedGoogle Scholar
  13. 13.
    Hughes, T. E.; Ordovas, J. M.; Schaefer, E. J. Regulation of intestinal apolipoprotein B synthesis and secretion by CaCo-2 cells. J. Biol. Chem. 263:3425–3431; 1988.PubMedGoogle Scholar
  14. 14.
    Hughson, E. J.; Culter, D. F.; Hopkins, C. R. Basolateral secretion of kappa light chain in the polarize epithelial cell line, CaCo-2. J. Cell Sci. 94:327–332; 1989.PubMedGoogle Scholar
  15. 15.
    Jin, Y.; Crichton, R. R. Iron transfer from ferritin to transferrin. FEBS. Lett. 215:41–46; 1987.PubMedCrossRefGoogle Scholar
  16. 16.
    Jin, Y.; Bacquet, A.; Florence, A., et al. Desferrithiocin and desferrioxamine B: cellular pharmacology and storage iron mobilisation. Biochem. Pharmacol. 38:3233–3240; 1989.PubMedCrossRefGoogle Scholar
  17. 17.
    Kam, N. T. P.; Albright, E.; Mathur, S. N., et al. Inhibition of acylcoenzyme A: cholesterol acyltransferase activity in CaCo-2 cells results in intracellular triglyceride accumulation. J. Lipid Res. 30:371–377; 1989.PubMedGoogle Scholar
  18. 18.
    Kleinman, H. K.; McGarvey, M. L.; Liotta, L. A., et al. Isolation and characterization of type IV procollagen, laminin and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 21:6188–6193; 1982.PubMedCrossRefGoogle Scholar
  19. 19.
    Laburthe, M.; Rousset, M.; Rouyer-Fessard, C., et al. Development of vasoactive intestinal peptide-responsive adenylate cyclase during enterocytic differentiation of CaCo-2 cells in culture. J. Biol. Chem. 262:10180–10184; 1987.PubMedGoogle Scholar
  20. 20.
    Le Bivic, A.; Bosc-Biern, I.; Reggio, H. Characterization of a glycoprotein expressed on the basolateral membrane of human intestinal epithelial cells and cultured colonic cell lines. Eur. J. Cell Biol. 46:113–120; 1988.PubMedGoogle Scholar
  21. 21.
    Lee, D. M.; Dashti, N.; Mok, T. Apolipoprotein B-100 is the major form of this apolipoprotein secreted by human intestinal CaCo-2 cells. Biochem. Biophys. Res. Commun. 156:581–587; 1988.PubMedCrossRefGoogle Scholar
  22. 22.
    Legras R.; Jogen, Y. Procédé de réalisation de performation dans un matériau solide en feuille; dispositif d’irradiation pour la mise en oeuvre du procédé et matériau ainsi obtenu. Eur. Patent noW 087/05850.Google Scholar
  23. 23.
    Lowry, O. H. Rosebrough, N. J.; Farr, A. L., et al. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275; 1951.PubMedGoogle Scholar
  24. 24.
    McKeehan, W. L.; Hamilton, W. G.; Ham, R. G. Selenium is an essential trace nutrient for growth of WI-38 diploid human fibroblasts. Proc. Natl. Acad. Sci. USA 73:2023–2026; 1976.PubMedCrossRefGoogle Scholar
  25. 25.
    Octave, J.-N.; Schneider, Y.-J.; Crichton, R. R., et al. Transferrin uptake by rat embryo fibroblasts. Eur. J. Biochem. 115:611–618; 1981.PubMedCrossRefGoogle Scholar
  26. 26.
    Pinto, M.; Robine-Leon, S.; Appay, M. D., et al. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line CaCo-2 in culture. Biol. Cell 47:323–330; 1983.Google Scholar
  27. 27.
    Rama, R.; Octave, J. N.; Schneider, Y.-J. Iron mobilization from cultured rat macrophages loaded with59Fe labeled erythroblasts. Protides Biol. Fluids Proc. 31:207–210; 1984.Google Scholar
  28. 28.
    Ramond, M. J.; Martinot-Peignoux, M.; Erlinger, S. Dome formation in the human colon carcinoma cell line CaCo-2 in culture. Influence of ouabain and permeable supports. Biol. Cell 54:85–92; 1985.Google Scholar
  29. 29.
    Rindler, N. J.; Traber, M. G. A specific sorting signal is not required for the polarized secretion of newly synthesized proteins from cultured intestinal epithelial cells. J. Cell Biol. 107:471–479; 1988.PubMedCrossRefGoogle Scholar
  30. 30.
    Rindler, M. J.; Traber, M. G. Polarized secretion of newly synthesized proteins by cultured intestinal epithelial cells: a basolaterally-directed default pathway. J. Cell Biol. 105:4, 58a; 1987.Google Scholar
  31. 31.
    Roiron, D.; Amouric, M.; Marvaldi, J., et al. Lactoferrin-binding sites at the surface of HT29-D cells; comparison with transferrin. Eur. J. Biochem. 186:367–373; 1989.PubMedCrossRefGoogle Scholar
  32. 32.
    Sergent-Engelen, T.; Halleux, C.; Ferain, E., et al. Improved cultivation of polarized animal cells on culture inserts with new transparent polyethylene terephthalate or polycarbonate microporous membranes. Biotechnol. Techniques. 4:89–96; 1990.CrossRefGoogle Scholar
  33. 33.
    Schneider, Y.-J. Optimisation of hybridoma cell growth and monoclonal antibody secretion in a chemically defined, serum- and proteinfree culture medium. J. Immunol. Methods 116:65–77; 1989.PubMedCrossRefGoogle Scholar
  34. 34.
    Schneider, Y.-J.; Lavoix, A. Monoclonal antibody production in semicontration and serum- and protein-free culture: effect of glutamine concentration and culture conditions on cell growth and antibody secretion. J. Immunol. Methods. 129:251–268; 1990.PubMedCrossRefGoogle Scholar
  35. 35.
    Sibille, J.-C.; Kondo, H.; Aisen, P. Interactions between isolated hepatocytes and Kupffer cells in iron metabolism: a possible role for ferritin as an iron carrier protein. Hepatology 8:296–301; 1988.PubMedCrossRefGoogle Scholar
  36. 36.
    Sibille, J.-C.; Ciriolo, M.; Kondo, H., et al. Subcellular localization of ferritin and iron taken up by rat hepatocytes. Biochem. J. 262:685–688; 1989.PubMedGoogle Scholar
  37. 37.
    Traber, M. G.; Kayden, H. J.; Rindler, M. J. Polarized secretion of newly synthesized lipoproteins by the CaCo-2 human intestinal cell line. J. Lipid Res. 28:1350–1363; 1987.PubMedGoogle Scholar

Copyright information

© Tissue Culture Association 1991

Authors and Affiliations

  • Christine Halleux
    • 1
  • Yves-Jacques Schneider
    • 1
  1. 1.Unité de BiochimieUniversité Catholique de LouvainLouvain-La-NeuveBelgium

Personalised recommendations