Theoretical and Mathematical Physics

, Volume 110, Issue 1, pp 78–90 | Cite as

Boundary value problem for the KDV equation on a half-line

  • V. E. Adler
  • L. T. Habibullin
  • A. B. Shabat
Article

Abstract

The L-A pair corresponding to the boundary value problem with the conditionu| x=0=a for the KdV equation is presented. A broad class of exact solutions to this equation is constructed and the conservation laws are discussed.

Keywords

Soliton Spectral Curve Integrable Boundary Condition Symmetry Approach Inverse Scattering Transform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. J. Ablowitz and H. Segur,J. Math. Phys.,16, 1054 (1975).MATHCrossRefADSGoogle Scholar
  2. 2.
    A. S. Fokas,Physica D,35, 167 (1989).CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    V. O. Tarasov,Inverse Problems,7, 435 (1991).MATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    I. T. Habibullin,Theor. Math. Phys.,86, 28 (1991).CrossRefGoogle Scholar
  5. 5.
    E. Corrigan, P. E. Dorey, R. H. Rietdijk, and R. Sasaki, “Affine Toda field theory on a half-line,” hep-th/9404108 (1994).Google Scholar
  6. 6.
    An Ton Bui,J. Differ. Eq.,25, No. 3, 288 (1977).MATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    A. V. Faminskii,Tr. Mosk. Mat. Obshch.,51, 54 (1988).Google Scholar
  8. 8.
    M. D. Ramazanov,Mat. Sb.,64, No. 2, 234 (1964).MathSciNetGoogle Scholar
  9. 9.
    V. Adler, B. Gürel, M. Gürses, and I. Habibullin, “Boundary conditions for integrable equations,” (1996), to appear inJ. Phys. A.Google Scholar
  10. 10.
    I. T. Habibullin,Phys. Lett. A,178, 369 (1993).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    I. T. Habibullin,Mat. Zam.,49, No. 4, 130 (1991).Google Scholar
  12. 12.
    B. Gürel, M. Gürses, and I. Habibullin,J. Math. Phys.,36, 6809 (1995).MATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    H. E. Moses,J. Math. Phys.,17, 73 (1976).CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    I. Kay and H. E. Moses,J. Appl. Phys.,27, 1503 (1956).MATHCrossRefADSGoogle Scholar
  15. 15.
    A. B. Shabat,Dinamika Sploshnoi Sredy,5, 130 (1970).Google Scholar
  16. 16.
    R. F. Bikbaev and V. O. Tarasov,Algebra Anal.,3, No. 4, 78 (1991).MATHMathSciNetGoogle Scholar
  17. 17.
    E. K. Sklyanin,Funkts. Anal. Prilozhen.,21, 86 (1987).MathSciNetGoogle Scholar
  18. 18.
    S. Ghoshal and A. B. Zamolodchikov, “Boundary state and boundaryS-matrix in two-dimensional integrable field theory,” Preprint RU-93-20; hep-th/9306002 (1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • V. E. Adler
    • 1
  • L. T. Habibullin
    • 1
  • A. B. Shabat
    • 2
  1. 1.Mathematical InstituteUfa Scientific Center for the Russian Academy of SciencesUSSR
  2. 2.L. D. Landau Institute of Theoretical PhysicsRussian Academy of SciencesUSSR

Personalised recommendations