Primates

, Volume 43, Issue 4, pp 343–349 | Cite as

Molecular evolution of IgG subclass among nonhuman primates: Implication of differences in antigenic determinants among apes

  • Yoko Asada
  • Yoshi Kawamoto
  • Takayoshi Shotaki
  • Keiji Terao
Short Communication

Abstract

The cross-reactivity of five different rabbit polyclonal antibodies to human IgG and IgG subclass (IgG1, IgG2, IgG3, and IgG4) was determined by competitive ELISA with nine nonhuman primate species including five apes, three Old World monkeys, and one New World monkey. As similar to those previously reported, the reactivity of anti-human IgG antibody with plasma from different primate species was closely related with phylogenic distance from human. Every anti-human IgG subclass antibody showed low cross-reactivity with plasma from Old World and New World monkeys. The plasma from all apes except for gibbons (Hylobates spp.) showed 60 to 100% of cross-reactivity with anti-human IgG2 and IgG3 antibodies. On the other hand, chimpanzee (Pan troglodytes andPan paniscus) and orangutan (Pongo pygmaeus) plasma showed 100% cross-reactivity with anti-human IgG1 antibody, but gorilla (Gorilla gorilla) and gibbon plasma showed no cross-reactivity. The chimpanzee and gorilla plasma cross-reacted with anti-human IgG4 antibody at different reactivity, 100% in chimpanzee and 50% in gorilla, but no cross-reactivity was observed in orangutan and gibbon plasma. These results suggest the possibilities that the divergence of “human-type” IgG subclasses might occur at the time of divergence ofHomo sapience fromHylobatidae, and that the molecular evolution of IgG1 as well as IgG4 is different from that of IgG2 and IgG3 in great apes, this is probably caused by different in development of immune function in apes during the course of evolution.

Key Words

Molecular evolution IgG subclass Apes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Black, C. M.;McDougal, J. S.;Evatt, B. L.;Reimer, C. B. 1991. Human markers for IgG2 and IgG4 appear to be on the same molecule in the chimpanzee.Immunology, 72: 94–98.PubMedGoogle Scholar
  2. Calvas, P.;Apoil, P. A.;Fortenfant, F.;Roubinet, F.;Andris, J.;Capra, D.;Blancher, A. 1999. Characterization of the three immunoglobulin G subclass of macaques.Scand. J. Immunol., 49: 595–610.PubMedCrossRefGoogle Scholar
  3. Cohen, S.;Milstein, C. 1967. Structure and biological properties of immunoglobulins.Adv. Immunol., 7: 1–98.PubMedCrossRefGoogle Scholar
  4. Damian, R. T.;Luker, M. F.;Greene, N. D.;Kalter, S. S. 1972. The occurrence of baboon-type IgG subclass antigenic determinants within the order primates.Folia Primatol., 17: 458–474.PubMedCrossRefGoogle Scholar
  5. Dugoujon, J. M.;Blancher, A.;Hazout, S.;Ruffie, J. 1993. Immunoglobulin Gm allotypes in apes: comparison with man.J. Med. Primatol., 22: 67–70.Google Scholar
  6. Fujimoto, K.;Terao, K.;Cho, F.;Honjo, S. 1987. Comparison of antigenicity of serum immunoglobulin G among human, cynomolgus monkey, African green monkey and squirrel monkey.Jpn. J. Med. Sci. Biol., 40: 131–135.PubMedGoogle Scholar
  7. Goodman, M. 1962. Evolution of the immunologic species specificity of human serum proteins.Human Biol., 34: 104–150.PubMedGoogle Scholar
  8. Greenlee, J. E.;Boyden, J. W.;Pingree, M.;Brashear, H. R.;Clawson, S. A.;Keeney, P. M. 2001. Antibody types and IgG subclasses in paraneoplastic neurological syndromes.J. Neurol. Sci., 184: 131–137.PubMedCrossRefGoogle Scholar
  9. Hafleigh, A. S.;Williams, C. A. Jr. 1966. Antigenic correspondence of serum albumins among the primates.Science, 151: 1530–1535.PubMedCrossRefGoogle Scholar
  10. Hamano, H.;Kawa, S.;Horiuchi, A.;Unno, H.;Furuya, N.;Akamatsu, T.;Fukushima, M.;Nikaido, T.;Nakayama, K.;Usuda, N.;Kiyosawa, K. 2001. High serum IgG4 concentration in patients with sclerosing pancreatitis.N. Eng. J. Med., 344: 732–738.CrossRefGoogle Scholar
  11. Jakobsen, H.;Adarna, B. C.;Schulz, D.;Rappuoli, R.;Jonsdottir, I. 2001. Characterization of the antibody responses to pneumococcal glycoconjugates and the effect of heat-labile enterotoxin or IgG subclasses after intranasal immunization.J. Infect. Dis., 183: 1494–1500.PubMedCrossRefGoogle Scholar
  12. Mitchell, H. M.;Mascord, K.;Hazell, S. L.;Daskalopoulos, G. 2001. Association between the IgG subclass responses, inflammation and disease status inHelicobactor pylori infection.Scand. J. Gastroenterol., 36: 149–155.PubMedCrossRefGoogle Scholar
  13. Scharf, O.;Golding, H.;King, L. R.;Eller, N.;Frazier, D.;Golding, B.;Scott, D. E. 2001. Immunoglobulin G3 from polyclonal human immunodeficiency virus (HIV) immune globulin is more potent than other subclasses in neutralizing HIV type 1.J. Virol., 75: 6558–6565.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Tangteerawatana, P.;Krudsood, S.;Chalermrut, K.;Looareesuwan, S.;Khusmith, S. 2001. Natural human IgG subclass antibodies toPlasmodium falciparum blood stage antigens and their relation to malaria resistance in an endemic area of Thailand.Southwest Asian J. Trop. Med. Public Health, 32: 247–254.Google Scholar
  15. Williams, C. A. Jr. 1964. Immunochemical analysis of serum proteins of the primates: a study in molecular evolution. In:Evolutionary and Genetic Biology of Primates, Vol. 2,Buettner-Janusch,J. (ed.), Academic Press, New York & London, pp. 25–74.CrossRefGoogle Scholar
  16. Wilson, A. C. 1967. Immunological time scale for hominid evolution.Science, 158: 1200–1203.PubMedCrossRefGoogle Scholar

Copyright information

© Japan Monkey Centre 2002

Authors and Affiliations

  • Yoko Asada
    • 1
  • Yoshi Kawamoto
    • 2
  • Takayoshi Shotaki
    • 2
  • Keiji Terao
    • 3
  1. 1.Tsukuba Primate CenterNational Institute of Infectious DiseasesIbarakiJapan
  2. 2.Primate Research InstituteKyoto UniversityAichtJapan
  3. 3.Tsukuba Primate CenterNational Institute of Infectious DiseasesIbarakiJapan

Personalised recommendations