Advertisement

In Vitro Cellular & Developmental Biology

, Volume 24, Issue 4, pp 266–273 | Cite as

Rapid assessment of islet viability with acridine orange and propidium iodide

  • Harvey L. Bank
Regular Papers

Summary

A simple, rapid method for estimating the viability of isolated islets of Langerhans with fluorescent dyes is described. Low concentrations of acridine orange and propidium iodide (AO/PI) were used to visualize living and dead islet cells simultaneously. AO/PI-stained islets can be divided into three distinct groups. Group A islets fluoresce green, contain insulin, and have normal ultrastructure; group C islets fluoresce primarily red, contain little or no insulin, and have cells with disrupted cellular membranes. Group B islets fluoresce red, green, and yellow. The yellow color is due to the addition of two primary colors from the superimposed red and green fluorescing cells. In this assay, the interpretation that red islet cells are dead and green islet cells are alive was confirmed by sequentially staining single islet cells with AO/PI and trypan blue. The observation that red islets are dead was confirmed by heat-killing, enzymatically damaging, treating with ethanol, or depriving islets of nutrients and observing the red fluorescence. This assay should be useful in studies where the assessment of islet viability is essential.

Key words

fluorescent dyes acridine orange propidium iodide diabetes insulin islets of Langerhans radioimmunoassay 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersson, A.; Sandler, S. Viability tests of cryopreserved endocrine pancreatic cells. Cryobiology 20: 161–168; 1983.PubMedCrossRefGoogle Scholar
  2. 2.
    Andersson, A. Isolated mouse pancreatic islets in culture: Effects of serum and different culture media on the insulin production of the islets. Diabetologia 14: 397–404; 1978.PubMedCrossRefGoogle Scholar
  3. 3.
    Andersson, A.; Westman, J.; Hellerstrom, C. Effect of glucose on the ultrastructure and insulin biosynthesis of isolated mouse pancreatic islets maintained in tissue culture. Diabetologia 10: 743–753; 1974.PubMedCrossRefGoogle Scholar
  4. 4.
    Bank, H. L.; Davis, R. F.; Emerson, D. Cryogenic preservation of isolated rat islets of Langerhans: Effect of cooling and warming rates. Diabetologia 16: 195–199; 1979.PubMedCrossRefGoogle Scholar
  5. 5.
    Bank, H. L.; Reichard, L. Cryogenic preservation of isolated islets of Langerhans: Two-step cooling. Cryobiology 18: 489–496; 1981.PubMedCrossRefGoogle Scholar
  6. 6.
    Cooperstein, S. J.; Watkins, D. The islets of Langerhans: biochemistry, physiology, and pathology. New York: Academic Press; 1981.Google Scholar
  7. 7.
    Corliss, D. A.; White, W. E., Jr. Fluorescence of yeast vitally stained with ethidium bromide and propidium iodide. J. Histochem. Cytochem. 29: 45–48; 1981.PubMedGoogle Scholar
  8. 8.
    Darzynkiewicz, Z.; Evenson, D.; Kapuscinski, J., et al. Denaturation of RNA and DNA in situ induced by acridine orange. Exp. Cell Res. 148: 31–46; 1983.PubMedCrossRefGoogle Scholar
  9. 9.
    Darzynkiewicz, Z.; Traganos, F.; Kapuscinski, J., et al. Accessibility of DNA in situ to various fluorochromes: Relationship to chromatin changes during erythroid differentiation of friend leukemia cells. Cytometry 5: 355–363; 1984.PubMedCrossRefGoogle Scholar
  10. 10.
    Edidin, M.; Church, J. A. A quantitative fluorochromatic assay for alloantibodies. Transplantation 6: 1010–1014; 1968.PubMedCrossRefGoogle Scholar
  11. 11.
    Edidin, M. A rapid, quantitative fluorescence assay for cell damage by cytotoxic antibodies. J. Immunol. 104: 1303–1306; 1970.PubMedGoogle Scholar
  12. 12.
    Evans, H. M.; Schulemann, W. The action of vital stains belonging to the benzidine group. Science 34: 443–453; 1914.CrossRefGoogle Scholar
  13. 13.
    Golden, J. F.; West, S. S.; Echols, C. K., et al. Quantitative fluorescence spectrophotometry of acridine-orange unfixed cells: potential for automated detection of human uterine cancer. J. Histochem. Cytochem. 24: 315–321; 1976.PubMedGoogle Scholar
  14. 14.
    Hedig, L. G. Determination of total serum insulin (IRI) in insulin-treated diabetic patients. Diabetologia 8: 260–266; 1972.CrossRefGoogle Scholar
  15. 15.
    Jones, K. H.; Senft, J. A. An improved method to determine cell viability by simultaneous staining with fluorescein diacetatepropidium iodide. J. Histochem. Cytochem. 33: 77–79; 1985.PubMedGoogle Scholar
  16. 16.
    Kapuscinski, J.; Darzynkiewicz, Z.; Melamed, M. R. Interactions of acridine orange with nucleic acids. Properties of complexes of acridine orange with single stranded ribonucleic acid. Biochem. Pharmacol. 32: 3679–3694; 1983.PubMedCrossRefGoogle Scholar
  17. 17.
    Krebs, A. T.; Gierlach, Z. S. Vital staining with the fluorochrome acridine orange and its application to radiobiology. Am. J. Roentgenol. Rad. Ther. 65: 93–96; 1951.Google Scholar
  18. 18.
    Krishan, A. Rapid flow cytofluormetric analysis of mammalian cells by propidium iodide staining. J. Cell. Biol. 66: 188–193; 1975.PubMedCrossRefGoogle Scholar
  19. 19.
    Lacy, P. E.; Davie, J. M.; Finke, E. H. Transplantation of insulin-producing tissue. Am. J. Med. 70: 589–594; 1981.PubMedCrossRefGoogle Scholar
  20. 20.
    Lacy, P. E.; Walker, M. M.; Fink, C. J. Perifusion of isolated rat islets in vitro: Participation of the microtubular system in the biphasic release of insulin. Diabetes 21: 987–988; 1972.PubMedGoogle Scholar
  21. 21.
    Lacy, P. E.; Kostianovsky, M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes 16: 35–39; 1967.PubMedGoogle Scholar
  22. 22.
    Lerman, L. S. The structure of the DNA-acridine complex. Proc. Natl. Acad. Sci. USA 49: 94–102; 1963.PubMedCrossRefGoogle Scholar
  23. 23.
    McKay, D. B.; Karow, A. M., Jr. Factors to consider in the assessment of viability of cryopreserved islets of Langerhans. Cryobiology 20: 151–160; 1982.CrossRefGoogle Scholar
  24. 24.
    Moore, P. L.; Didyk, R. D.; Bank, H. L. The rapid assessment of viability of isolated islets of Langerhans with fluorescent dyes: relationship between fluorescent images and insulin content. J. Cell. Biol. 101: 247a; 1985.CrossRefGoogle Scholar
  25. 25.
    Moore, P. L.; Didyk, R.; Bank, H. L. The interpretation of a new method for assessing islet viability with fluorescent dyes. Diabetes 35: 177a; 1986.Google Scholar
  26. 26.
    Nakamura, N.; Hurst, R. E.; West, S. S., et al. Biophysical cytochemical investigations of intracellular heparin in neoplastic mast cells. J. Histochem. Cytochem. 28: 223–230; 1980.PubMedGoogle Scholar
  27. 27.
    Pace, C. S.; Sachs, G. Glucose-induced proton uptake in secretory granules of beta-cells in monolayer culture. Am. J. Physiol. 242: C382–387; 1982.PubMedGoogle Scholar
  28. 28.
    Pantazis, C. G.; Kniker, W. T. Assessment of blood leukocyte microbial killing by using a new fluorochrome in microassay. J. Reticuloendothel. Soc. 26: 155–170; 1979.PubMedGoogle Scholar
  29. 29.
    Persidsky, M. D.; Baillie, G. S. Fluorometric test of cell membrane integrity. Cryobiology 14: 322–331; 1977.PubMedCrossRefGoogle Scholar
  30. 30.
    Prowse, S. J.; Lafferty, K. J.; Simeonovid, C. J., et al. The reversal of diabetes by pancreatic islet transplantation. Diabetes 31 (Suppl) 4: 30–38; 1982.PubMedGoogle Scholar
  31. 31.
    Reaven, E. P.; Gold, G.; Reaven, G. Effect of age on glucose stimulated insulin release by the B-cell of the rat. J. Clin. Invest. 64: 591–599; 1982.CrossRefGoogle Scholar
  32. 32.
    Rotman, B.; Papermaster, B. W. Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters. Proc. Natl. Acad. Sci. USA 55: 134–141; 1966.PubMedCrossRefGoogle Scholar
  33. 33.
    Sandler, S.; Andersson, A.; Swenne, I., et al. Structure and function of human fetal endocrine pancreas before and after cryopreservation. Cryobiology 20: 230–236; 1983.PubMedCrossRefGoogle Scholar
  34. 34.
    Scharp, D. W.; Downing, R.; Merrell, R. C., et al. New approaches in the methods for isolating mammalian islets of Langerhans utilizing dog pancreas. In: Federlin, K.; Bretzel, R. G., eds. Islet isolation, culture, and cryopreservation. New York: Thiema-Stratton; 1981.Google Scholar
  35. 35.
    Strugger, S. Fluorescence microscope examination of trypanosomas in blood. Can. J. Res. Sect. E. 26: 229–231; 1948.Google Scholar
  36. 36.
    Sutherland, D. E. R. Pancreas and islet transplantation. I. Experimental studies. Diabetologia 20: 161–185; 1981.PubMedGoogle Scholar
  37. 37.
    Taylor, M. J.; Duffy, T. J.; Hunt, C. J., et al. Transplantation andin vitro perifusion of rat islets of Langerhans after slow cooling and warming in the presence of either glycerol or dimethyl sulfoxide. Cryobiology 20: 185–204; 1983.PubMedCrossRefGoogle Scholar
  38. 38.
    Traganos, F.; Adams, L. R.; Kamentsky, L. A., et al. Critical effect of the dye concentration on acridine orange fluorescence of fixed thymocytes. Acta Cytol 16: 281–283; 1972.PubMedGoogle Scholar
  39. 39.
    Tyrer, H. W.; Golden, J. F.; Vansickel, M. H., et al. Automatic cell identification and enrichment in lung cancer. II. Acridine orange for cell sorting of sputum. J. Histochem. Cytochem. 27: 552–560; 1979.PubMedGoogle Scholar
  40. 40.
    Waring, M. Ethidium and propidium. In: Corcoran, J. W.; Hahn, F. E., eds. Antibiotics III. New York: Springer-Verlag; 1975: 141–165.Google Scholar
  41. 41.
    Weill, G.; Calvin, M. Optical properties of chromophobeacromolecule complexes: absorption and fluorescence of acridine dyes bound to polyphosphates and DNA. Biopolymers 1: 401–417; 1963.CrossRefGoogle Scholar
  42. 42.
    Welsh, M.; Hellerstrom, C.; Andersson, A. Respiration and insulin release in mouse pancreatic islets. Effects ofl-leucine and 2-ketoisocaproate in combination withd-glucose andd-glutamine. Biochem. Biophys. Acta. 721: 178–190; 1982.PubMedCrossRefGoogle Scholar
  43. 43.
    West, S. S. Fluorescence microspectrophotometry of supravitally-stained cells. In: Pollister, A. W., ed. Physical techniques in biological research, vol. 30, 2nd ed. New York: Academic Press; 1969: 253–321.Google Scholar

Copyright information

© Tissue Culture Association, Inc 1988

Authors and Affiliations

  • Harvey L. Bank
    • 1
  1. 1.Department of Pathology and Laboratory MedicineMedical University of South CarolinaCharleston

Personalised recommendations