Advertisement

Metallurgical Transactions A

, Volume 19, Issue 4, pp 1121–1125 | Cite as

Literature Survey on Diffusivities of Oxygen, Aluminum, and Vanadium in Alpha Titanium, Beta Titanium, and in Rutile

  • Z. Liu
  • G. Welsch
Communications

Abstract

A survey of diffusion data of interstitial oxygen and of the substitutional elements aluminum and vanadium is presented for alpha and beta titanium. It is based on a survey of literature. Oxygen is an important interstitial element in titanium alloys. Oxygen’s large chemical affinity to titanium is indicated by Ti—O bond energy of 2.12 eV,1 comparable to the Ti—Ti bond energy of 2.56 eV.2 Oxygen is difficult to eliminate completely from titanium, and commercial titanium alloys usually contain from 0.10 to 0.20 wt pct oxygen. Oxygen significantly affects the mechanical properties of titanium alloys1,3 and is sometimes used as an alloying element. The effects of oxygen on phase transformation ,4,5,6 Youngs modulus,7,8 hardness,9,10 fracture toughness,11 and other mechanical properties12 have been amply documented. Aluminum and vanadium are the most frequently used substitutional alloying elements. Aluminum is an alpha stabilizer and vanadium is a beta stabilizer.

Keywords

Vanadium Metallurgical Transaction Rutile Titanium Alloy Oxide Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Conrad:Prog. in Mat. Sci., 1981, vol. 26, p. 138.Google Scholar
  2. 2.
    A. Kant and B. Strauss:J. Chem. Phys., 1964, vol. 41, pp. 3806–08.CrossRefGoogle Scholar
  3. 3.
    H. Margolin and J. P. Nielsen:Modern Materials, H. H. Hausner, ed., 1960, vol. 2, pp. 225-325.Google Scholar
  4. 4.
    J. C. Williams:Titanium Science and Technology, R. I. Jaffee and H. M. Butte, eds., Plenum Press, 1973, pp. 1454-58.Google Scholar
  5. 5.
    M. A. Nikhanorov and V. V. Latsh:Titanium and Titanium Alloys, J. C. Williams and A. F. Belov, eds., Plenum Press, 1976, p. 1655.Google Scholar
  6. 6.
    A. I. Kahveci and G. Welsch:Scripta Metall., 1986, vol. 20, pp. 1287–90.CrossRefGoogle Scholar
  7. 7.
    H. Conrad:Prog. in Mat. Sci., 1981, vol. 26, p. 136.Google Scholar
  8. 8.
    G. Welsch and W. Bunk:Metall. Tans. A, 1982, vol. 13A, pp. 889–99.Google Scholar
  9. 9.
    R. I. Jaffee:Prog. in Metal Phys., 1958, vol. 7, p. 109.Google Scholar
  10. 10.
    Z. Liu and G. Welsch:Metall. Trans. A, 1988, vol. 19A, pp. 527–42.Google Scholar
  11. 11.
    M. J. Harrigan, M. P. Kaplan, and A. W. Sommer:Titanium and Titanium Source Book, ASM, Metals Park, OH, 1982, pp. 50–79.Google Scholar
  12. 12.
    R.I. Jaffee:Titanium ’80 Science and Technology, H. Kimura and O. Izumi, eds., TMS-AIME, 1980, p. 53.Google Scholar
  13. 13.
    J. F. Murdock, T. S. Lundy, and E. E. Stansbury:Acta Metall., 1964, vol. 12, pp. 1033–39.CrossRefGoogle Scholar
  14. 14.
    J. F. Murdock and C. J. McHargue:Acta Metall., 1968, vol. 16, pp. 493–500.CrossRefGoogle Scholar
  15. 15.
    A. S. Nowick and B. S. Berry:Anelastic Relaxation in Crystalline Solids, Academic Press, New York, NY, 1972, p. 14.Google Scholar
  16. 16.
    P. Kofstad:High-Temperature Oxidation of Metals, John Wiley & Sons, Inc., New York, NY, 1966, p. 157.Google Scholar
  17. 17.
    J. L. Bocquet, G. Brebec, and Y. Limoge: inPhysical Metallurgy, R. W. Cahn and P. Haasen, eds., North Holland Physical Pub., 1983, pp. 408-09.Google Scholar
  18. 18.
    D. A. Porter and K. E. Easterling:Phase Transformation in Metals and Alloys, von Nostrand Reinhold, 1987, pp. 63-65.Google Scholar
  19. 19.
    C. J. Rosa:Metall. Trans., 1970, vol. 1, pp. 2517–22.Google Scholar
  20. 20.
    J. N. Pratt, W. J. Bratina, and B. Chalmers:Acta Metall., 1954, vol. 2, pp. 203–08.CrossRefGoogle Scholar
  21. 21.
    A. V. Revyakin:Izv. Akad. Nauk. SSR, Otd. Tekhn. Nauk, Met. i Toplivo, 5 (1961), pp. 113–16, from P. Kofstad,High-Temperature Oxidation of Metals, John Wiley & Sons, Inc., New York, NY, 1966, Ref. 203.Google Scholar
  22. 22.
    D. R. Miller:Trans. TMS-AIME, 1962, vol. 224, pp. 275–81.Google Scholar
  23. 23.
    D. Gupta and S. Weinig:Acta Metall., 1962, vol. 10, pp. 292–98.CrossRefGoogle Scholar
  24. 24.
    D. R. Miller and K. M. Browne:The Science, Technology and Application of Titanium, R. I. Jaffee and N. E. Promisel, eds., The Science, Pergamon Press, 1968, pp. 401-06.Google Scholar
  25. 25.
    K. M. Browne:Acta Metall., 1972, vol. 20, pp. 507–14.CrossRefGoogle Scholar
  26. 26.
    W. P. Roe, H. R. Palmer, and W. R. Opie:Trans. ASM, 1960, vol. 52, pp. 191–200.Google Scholar
  27. 27.
    T. N. Wittberg, J. D. Wolf, R. G. Keil, and P. S. Wang:J. Vac. Sci. Technol. A, 1983, vol. AI(2), pp. 475–78.CrossRefADSGoogle Scholar
  28. 28.
    J. Stringer:Acta Metall., 1960, vol. 8, pp. 758–66.CrossRefGoogle Scholar
  29. 29.
    P. Kofstad:J. Less-Common Met., 1967, vol. 12, pp. 449–64.CrossRefGoogle Scholar
  30. 30.
    C. E. Shamblen and T. K. Redden:The Science, Technology and Application of Titanium, R. I. Jaffee and N. E. Promisel, eds., The Science, Pergamon Press, 1968, pp. 199-208.Google Scholar
  31. 31.
    D. V. Ignatov, M. S. Model, L. F. Sokyriansky, and A. Ya. Shinyaev:Titanium Science and Technology, R. I. Jaffee and H. M. Butte, eds., Plenum Press, 1973, pp. 2535-44.Google Scholar
  32. 32.
    M. Dechamps and P. Lehr:J. Less-Common Met., 1977, vol. 56, pp. 193–207.CrossRefGoogle Scholar
  33. 33.
    D. David, E. A. Garcia, G. Beranger, J. P. Bars, E. Etchessahar, and J. Debuigne:Titanium ’80 Science and Technology, H. Kimura and O. Izumi, eds., TMS-AIME, 1980, pp. 537-47.Google Scholar
  34. 34.
    V. I. Tikhomirov and V. I. D’yachkov:Phys. Met. Metallogr., 1970, vol. 30, pp. 115–20.Google Scholar
  35. 35.
    J. E. Reynolds, H. R. Ogden, and R. I. Jaffee:Trans. ASM, 1957, vol. 49, pp. 280–99.Google Scholar
  36. 36.
    V.I. Tikhomirov and V.I. Dyachkov:Zh. Prikl. Khim., 1967, vol. 40, pp. 2405–13, fromDiffusion Data, vol. 2, p. 308.Google Scholar
  37. 37.
    D. David, G. Beranger, and E. A. Garcia:J. Electrochem. Soc., 1983, vol. 130, pp. 1423–26.CrossRefGoogle Scholar
  38. 38.
    D. David, E. A. Garcia, X. Lucas, and G. Beranger:J. LessCommon Met., 1979, vol. 65, pp. 51–69.CrossRefGoogle Scholar
  39. 39.
    E. de Paula E. Silva: Thesis, University of Paris XI, Paris, France, 1972, from Ref. 37.Google Scholar
  40. 40.
    E. de Paula E. Silva, E. A. Garcia, and G. Beranger: “Journees d’Etude du Titane at de Ses Alliages”, Nantes, 1973, from Ref. 37.Google Scholar
  41. 41.
    Y. A. Bertin: Thesis, Poitiers, 1979, from Ref. 37.Google Scholar
  42. 42.
    L. F. Sokiryanskiy, D. V. Ignatov, and A. Ya. Shinyaev:Phys. Met. Metallogr., 1969, vol. 28, pp. 103–08.Google Scholar
  43. 43.
    H. Conrad, M. Doner, and B. de Meester:Titanium Science and Technology, R. I. Jaffee and H. M. Burte, eds., Plenum Press, 1973, p. 970.Google Scholar
  44. 44.
    D. Goold:J. Inst. of Met., 1959-60, vol. 88, pp. 444–48.Google Scholar
  45. 45.
    J. Pouliquen, S. Offret, and J. de Fouquent:C. R. Acad. Sci., Paris, 1972, Serie C, vol. 274, pp. 1760-63.Google Scholar
  46. 46.
    K. Ouchi, Y. Iijima, and K. Hirano:Titanium ’80 Science and Technology, H. Kimura and O. Izumi, eds., TMS-AIME, 1980, pp. 559-68.Google Scholar
  47. 47.
    F. Claisse and H. P. Koenig:Acta Metall., 1956, vol. 4, pp. 650–54.CrossRefGoogle Scholar
  48. 48.
    L. F. Sokiryanskii, D. V. Ignatov, A. Ya. Shinyaev, I. V. Bogolyubova, V. V. Latsh, and M. S. Model:Titanovye Splavy Nov. Tekh., Mater. Nauch.-Tekh. Soveshch., 1966 (pub. 1968), pp. 201–10 (Ed. N. P. Sazhin, Izd. “Nauka”: Moscow, USSR), from Chemical Abstracts, 1969, vol. 71, no. 8, 83986r.Google Scholar
  49. 49.
    O. N. Carlson, F. S. Schmidt, and R. R. Lichtenberg:Metall. Trans. A, 1975, vol. 6A, pp. 725–31.Google Scholar
  50. 50.
    R. J. Wasilewski and G. L. Kehl:J. Inst. of Met., 1954-55, vol. 83, pp. 94–104.Google Scholar
  51. 51.
    E. W. Collings:The Physical Metallurgy of Titanium Alloys, ASM, Metals Park, OH, 1980, p. 204.Google Scholar
  52. 52.
    S. G. Fedotov, M. G. Chudinov, and K. M. Konstantinov:Phys. Met. Metallogr, 1969, vol. 27, pp. 111–14.Google Scholar
  53. 53.
    K. Inoue, Y. Iijima, and K. Hirano:Titanium ’80 Science and Technology, H. Kimura and O. Izumi, eds., TMS-AIME, 1980, pp. 569-576.Google Scholar
  54. 54.
    A. E. Puritan and D. Lazarus:Phys. Rev. B, 1979, vol. 19, pp. 4027–37.CrossRefADSGoogle Scholar
  55. 55.
    J. Unnam, R. N. Shenoy, and R. K. Clark:Oxid. of Metals, 1986, vol. 26, pp. 231–52.CrossRefGoogle Scholar
  56. 56.
    R. N. Shenoy, J. Unnam, and R. K. Clark:Oxid. of Metals, 1986, vol. 26, pp. 105–24.CrossRefGoogle Scholar
  57. 57.
    D. J. Derry, D. G. Lees, and J. M. Calvert:Proc. Brit. Ceram. Soc., 1971, no. 19, pp. 77-83.Google Scholar
  58. 58.
    R. Haul and G. Dümberg:J. Phys. Chem. Solids, 1965, vol. 26, pp. 1–10.CrossRefGoogle Scholar
  59. 59.
    T. B. Gruenwald and G. Gorden:J. lnorg. Nucl. Chem., 1971, vol. 33, pp. 1151–55.CrossRefGoogle Scholar

Copyright information

© The Metallurgical Society of AIME 1988

Authors and Affiliations

  • Z. Liu
    • 1
  • G. Welsch
    • 1
  1. 1.Department of Materials Science and EngineeringCase Institute of Technology, Case Western Reserve UniversityClevelandUSA

Personalised recommendations