Advertisement

In Vitro Cellular & Developmental Biology

, Volume 25, Issue 4, pp 373–380 | Cite as

Culture and behavior of osteoblastic cells isolated from normal trabecular bone surfaces

  • Pierre J. Marie
  • Abderrahim Lomri
  • Ayman Sabbagh
  • Michel Basle
Regular Papers

Summary

We report the characterization of human osteoblastic cells that were derived from the surface of trabecular bone fragments. After removal of bone marrow cells, the bone lining osteoblastic cells lining the bone surface were obtained by migration and proliferation from the trabecular surface onto a nylon mesh. The isolated population proliferated in culture and exhibited osteoblastic phenotype. Cultured cells show a regular arrangment in vitro and exhibited multiple interconnecting junctions on scanning electron microscopic examination. Immunocytochemical staining showed that the cells produced almost exclusively type I collagen. Bone-surface-derived cells responded to 1–34 human parathyroid hormone by increasing intracellular cyclic AMP. Cell cultures exhibited high alkaline phosphatase activity, which was unaffected by 1,25 (OH)2 vitamin D. Untreated cells produced high levels of osteocalcin, a bone-specific protein, and they responded to 1,25(OH) vitamin D by increasing osteocalcin synthesis in a dose-dependent manner. Although cells cultured for up to 5 mo. still produced osteocalcin, the response to 1,25(OH)2D decreased after multiple passages. This study shows that the bone cell populations isolated from trabecular bone surface are enriched in osteoblast precursors and mature osteoblstic cells.

Key words

osteoblasts cell culture osteocalcin alkaline phosphatase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashton, B. A.; Abdullah, F.; Cave, J., et al. Characterization of cells with high alkaline phosphatase activity derived from human bone and marrow: preliminary assessment of their osteogenicity. Bone 6:313–319; 1985.CrossRefPubMedGoogle Scholar
  2. 2.
    Aubin, J. E.; Tertinegg, I.; Ber, R., et al. Consistent patterns of changing hormone responsiveness during continuous culture of cloned rat calvaria cells. J. Bone Min. Res. 3:333–339; 1988.CrossRefGoogle Scholar
  3. 3.
    Auf'mkolk, B.; Hauschka, P. V.; Schwartz, E. R. Characterization of human bone cells in culture. Calcif. Tissue Int. 37:228–235; 1985.CrossRefPubMedGoogle Scholar
  4. 4.
    Bellows, C. G.; Sodek, J.; Yao, K. L., et al. Phenotypic differences in subclones and long-term cultures of clonally-derived rat bone cell lines. J. Cell Biochem. 31:153–169; 1986.CrossRefPubMedGoogle Scholar
  5. 5.
    Beresford, J. N.; Gallagher, J. A.; Poser, J. W., et al. Production of osteocalcin by human bone cells in vitro. Effects of 1,25(OH)2D3, 24,25(OH)2D3, parathyroid hormone, and glucocorticoids. Metab. Bone Dis & Relat. Res. 5:229–234; 1984.CrossRefGoogle Scholar
  6. 6.
    Ecarot-Charrier, B.; Glorieux, F. H.; Van der Rest, M., et al. Osteoblasts isolated from mouse calvaria initiate matrix mineralization. J. Cell. Biol. 96:639–643; 1983.CrossRefPubMedGoogle Scholar
  7. 7.
    Friedenstein, A. J. Precursor cells of mechanocytes. Int. Rev. Cytol. 47:327–355; 1976.PubMedCrossRefGoogle Scholar
  8. 8.
    Gowen, M.; Wood, D. D.; Russell, G. G. Stimulation of the proliferation of human bone cells by human monocyte products with interleukin-1 activity. J. Clin. Invest. 75:1223–1229; 1985.PubMedGoogle Scholar
  9. 9.
    Grigoriadis, A. E.; Petkovitch, P. M.; Ber R., et al. Subclone heterogeneity in a clonally-derived osteoblast-like cell line Bone 6:249–256; 1985.CrossRefPubMedGoogle Scholar
  10. 10.
    Jones, S. J.; Boyde, A.; Ness, A. R. SEM studies of osteoblasts: size, shape and anisotropy in relation to hormonal status in organ culture. In: Meunier, P. J., ed. Bone histomorphometry. Toulouse: Fournie Publications; 1977.Google Scholar
  11. 11.
    Kaplan, G. C.; Eilon, G.; Poser, J. W., et al. Constitutive biosynthesis of bone gla protein in a human osteosarcoma cell line. Endocrinology 117:1235–1238; 1985.PubMedGoogle Scholar
  12. 12.
    Lomri, A.; Marie, P. J.; Tran, P. V., et al. Characterization of endosteal osteoblastic cells isolated from mouse caudal vertebrae. Bone 9:165–175; 1988.CrossRefPubMedGoogle Scholar
  13. 13.
    Lowry, O. H.; Rosebrough, N. J.; Farr, A. L., et al. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275; 1951.PubMedGoogle Scholar
  14. 14.
    McDonald, B. R.; Gallagher, J. A.; Russell, R. G. G. Parathyroid hormone stimulates the proliferation of cells derived from human bone. Endocrinology 118:2445–2449; 1986.Google Scholar
  15. 15.
    Marie, P. J.; Lomri, A.; de Vernejoul, M. C., et al. Responsiveness of osteoblastic cells isolated from uremic patients on CAPD to parathyroid hormone and 1,25(OH)2D (Abstr). Kidney Int. 31:354; 1987.Google Scholar
  16. 16.
    Martin, T. J.; Ng, K. W. Cells of the osteoblast lineage in the regulation of bone turnover. In: Christiansen, C. C., ed.. Osteoporosis 1987. Copenhagen: Glostrup Press; 1987:189–193.Google Scholar
  17. 17.
    Mills, B. G.; Singer, F. R.; Weiner, L. P., et al. Long-term culture of cells from bone affected by Paget's disease. Calcif. Tissue Int. 29:79–87; 1979.CrossRefPubMedGoogle Scholar
  18. 18.
    Nefussi, J. R.; Boy-Lefevre, M. L.; Boulekbache, H., et al. Mineralization in vitro of matrix formed by osteoblasts isolated by collagenase digestion. Differentiation 29:160–168; 1985.CrossRefPubMedGoogle Scholar
  19. 19.
    Nishimoto, S. K.; Price, P. A. Secretion of the vitamin K-dependent protein of bone by rat osteosarcoma cells. J. Biol. Chem. 255:6579–6583; 1980.PubMedGoogle Scholar
  20. 20.
    Owen, M. Lineage of osteogenic cells and their relationship to the stromal system. In: Peck, W. A., ed. Bone and mineral research, vol 3. Amsterdam: Elsevier Science Publishers; 1985:1–26.Google Scholar
  21. 21.
    Peck, W. A.; Binge, S. J.; Fedak, S. A. Bone cells: biochemical and biological studies after enzymatic isolation. Science 146:1476–1477; 1964.CrossRefPubMedGoogle Scholar
  22. 22.
    Robey, P. G.; Termine, J. D. Human bone cells in vitro. Calcif. Tissue Int. 37:453–460; 1985.CrossRefPubMedGoogle Scholar
  23. 23.
    Rodan, G. A.; Martin, T. J. Role of osteoblasts in hormonal control of bone resorption—a hypothesis. Calcif. Tissue Int. 33:349–351; 1981.CrossRefPubMedGoogle Scholar
  24. 24.
    Rodan, G. A.; Rodan, S. B. Expression of the osteoblastic phenotype. In: Peck, W. A., ed. Annual advances in bone and mineral research, vol. 2. Amsterdam: Elsevier Science Publishers; 1983:244–285.Google Scholar
  25. 25.
    Sabbagh, A.; Marie, P. J.; de Vernejoul, M. C., et al. Age-related changes in cell proliferation and response to hormones in osteoblastic cells isolated from osteoporotic patients. Calcif. Tissue Int. (Abstr.) 41S2:14; 1987.Google Scholar
  26. 26.
    Sudo, H.; Kodama, H. A.; Amgai, Y., et al. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J. Cell. Biol. 96:191–198; 1983.CrossRefPubMedGoogle Scholar
  27. 27.
    Wergedal, J. E.; Baylink, D. J. Characterization of cells isolated and cultured from human bone. Proc. Soc. Exp. Biol. Med. 176:60–69; 1984.PubMedGoogle Scholar
  28. 28.
    Wong, G. L.; Cohn, D. V. Separation of parathyroid hormone and calcitonin sensitive cells from non-responsive bone cells. Nature 252:713–715; 1974.CrossRefPubMedGoogle Scholar
  29. 29.
    Wu, T. L.; Insogna, K. L.; Hough, L. M., et al. Skin-derived fibroblasts respond to human parathyroid hormone-like adenylate cyclase stimulating proteins. J. Clin. Endocrinol. Metab. 65:105–110; 1987.PubMedCrossRefGoogle Scholar
  30. 30.
    Yee, J. A. Properties of osteoblast-like cells isolated from the cortical endosteal bone surface of adult rabbits. Calcif. Tiss. Int. 35:571–577; 1983.CrossRefGoogle Scholar

Copyright information

© Tissue Culture Association, Inc 1989

Authors and Affiliations

  • Pierre J. Marie
    • 1
  • Abderrahim Lomri
    • 1
  • Ayman Sabbagh
    • 1
  • Michel Basle
    • 2
  1. 1.INSERM Unité 18Hôpital LariboisièreParisFrance
  2. 2.Faculté de MédecineUniversité d'AngersAngersFrance

Personalised recommendations