Advertisement

In Vitro Cellular & Developmental Biology

, Volume 26, Issue 10, pp 978–982 | Cite as

Long ultradian rhythms in red blood cells and ghost suspensions: Possible involvement of cell membrane

  • L. Peleg
  • A. Dotan
  • P. Luzato
  • I. E. Ashkenazi
Regular Papers

Summary

Oscillations in glyceraldehyde-3-phosphate dehydrogenase (GAPD) and glucose-6-phosphate dehydrogenase (G6PD) activities were recorded in suspensions of intact human red blood cells (RBCs) exposed to various light regimens. The periods of these oscillations, defined as “long ultradian,” ranged between 13 and 18 h regardless of light regimen. The patterns of enzymatic activities were the same when assayed at each time point, in full hypotonic hemolysates, and membrane-free hemolysates. However, if hemolysates were prepared by sonication the activity pattern did not exhibit significant oscillations and the activity was higher than that recorded in hypotonic hemolysates. The observed rhythms may reflect a time-dependent attachment and detachment of enzyme molecules from cell membrane, suggesting that at the bound state the enzyme molecules are (temporarily) inactive. Oscillations with similar long ultradian periods were also observed in Ca++ concentration of suspended RBCs and in the binding of Ca++45 to human RBC ghosts. Treatment of the RBCs with A2C or Diamide before the preparation of the ghosts changed or distorted the rhythmic pattern of Ca++45 binding. These results point to the role of the membrane in processing the long ultradian oscillations. The relation between this type of oscillations to circadian rhythm is discussed.

Key words

ultradian circadian rhythm red blood cells RBC ghosts enzymes cell suspension 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashkenazi, I. E.; Hartman, H.; Strulovitz, B., et al. Activity rhythms of enzymes in human red blood cell suspensions. J. Interdiscip. Cycle Res. 6:291–301; 1975.Google Scholar
  2. Block, G. D.; Khalsa, S. B. Cellular basis of circadian rhythmicity in bulla: a model system. In: Hekkens, W. T.; Kerkhof, G. A.; Rietveld, W. J., eds. Advance in the biosciences, vol. 73. New York: Pergamon Press; 1988:55–66.Google Scholar
  3. Brok-Simoni, F.; Ashkenazi, I. E.; Ramot, B., et al. The diurnal rhythm of enzymes in human red cells. Br. J. Haematol. 32:601–607; 1976.PubMedGoogle Scholar
  4. Cornelissen, G.; Touitou, Y.; Tritsch, A. B., et al. Circadian rhythms of Adenosine Deaminase activity in human erythrocytes: a transverse study on young, elderly and senile demented subjects. Ric. Clin. Lab. 15:365–374; 1985.PubMedGoogle Scholar
  5. Cornelius, G.; Rensing, L. Daily rhythm changes in Mg+2 dependent ATPase activity in human red blood cell membranes in vitro. Biochem. Biophys. Res. Commun. 71:1269–1272; 1976.PubMedCrossRefGoogle Scholar
  6. Cugini, P.; Letizia, C.; Murano, G., et al. Internal desynchronization between circadian rhythms of plasma aldosterone and erythrocyte membrane-bound Na/K-ATPase. Adv. Chronobiol. B:219–228; 1987.Google Scholar
  7. Driessche, T. V. Research on the molecular basis of circadian rhythmicity. The cellular approach. In: Hekkens, W. T.; Kerkhof, G. A.; Rietveld, W. J., eds. Advance in the biosciences, vol. 73. New York: Pergamon Press; 1988:19–29.Google Scholar
  8. Duchon, G.; Collier, H. B. Enzyme activities of human erythrocyte ghosts: effects of various treatments. J. Membr. Biol. 6:138–157; 1971.CrossRefGoogle Scholar
  9. Earnest, D. J.; Sladeck, C. D. Circadian rhythms of vasopressin release from individual rat suprachiasmatic explants in vitro. Brain Res. 382:129–133; 1986.PubMedCrossRefGoogle Scholar
  10. Edmunds, L. N. Chronobiology at the cellular and molecular levels: recent developments. In: Hekkens, W. T; Kerkhof, G. A.; Rietveld, W. J., ed. Advance in the biosciences, vol. 73. New York: Pergamon Press; 1988:1–18.Google Scholar
  11. Fairbanks, G.; Steck, T. L.; Wallach, D. F. H. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10:2606–2617; 1971.PubMedCrossRefGoogle Scholar
  12. Gaczyska, M.; Bartosz, G. Oscillations in erythrocyte membrane preparations. Cytobios 52:93–98; 1987.Google Scholar
  13. Gamalega, R. E.; Shishko, E. D.; Chyorny, A. P. Preservation of circadian rhythms by human lymphocytes in vitro. Biul. Eksp Biol Med Moskva. 106:586–600; 1988.Google Scholar
  14. Halberg, F. Chronobiology. Ann. Rev. Physiol. 31:675–725; 1969.CrossRefGoogle Scholar
  15. Harrison, D. G.; Long, C. The calcium content of human erythrocytes. J. Physiol. London 199:367–381; 1968.PubMedGoogle Scholar
  16. Hartman, H.; Ashkenazi, I. E.; Epel, B. L. Circadian changes in membrane properties of human red blood cells in vitro as measured by membrane probe. FEBS Lett. 67:161–163; 1976.PubMedCrossRefGoogle Scholar
  17. Hastings, J. W.; Schwieger, H. G., eds. The molecular basis of circadian rhythms. Dahlem Conference, Berlin. Abakon Verlagsgesellschaft, Germany; 1975.Google Scholar
  18. Karakashian, M. W.; Schwieger, H. G. Circadian properties of the rhythmic system in individual nucleated and enucleated cells ofAcetabularia mediterranea. Exp. Cell Res. 97:366–377; 1976.PubMedCrossRefGoogle Scholar
  19. Kornberg, A.; Horecker, B. L. Glucose-6-phosphate dehydrogenase. In: Colowick, S. P.; Kaplan, N. O., eds. Methods in enzymology, vol. I. New York: Academic Press; 1955:323–334.CrossRefGoogle Scholar
  20. Kosower, E. M.; Kosower, N. S.; Wegman, P. Membrane mobility agents: IV. The mechanism of particle-cell and cell-cell fusion. Biochem. Biophys. Acta 471:311–329; 1977.PubMedCrossRefGoogle Scholar
  21. Kosower, N. S.; Faltin, Z.; Kosower, E. M. Cell-membrane receptor classes delimited through cap formation either with diamide or with membrane mobility agent, A2C. J. Immunol. Methods 41:215–223; 1981.PubMedCrossRefGoogle Scholar
  22. Lotshaw, D. P.; Jacklet, J. W. Serotonin induced protein phosphorylation in the aplysia eye. Comp. Biochem. Physiol. 86C:27–32; 1987.Google Scholar
  23. Mabood, S. F.; Newman, P. F. J.; Nimmo, I. A. Circadian rhythm in the activity of acetylcholinesterase of human erythrocytes incubated in vitro. Biochem. Soc. Trans. 6:305–308; 1978.PubMedGoogle Scholar
  24. Marchesi, V. T.; Palade, G. E. The localization of Mg−Na−K-activated adenosine triphosphate on red cell membranes. J. Cell Biol. 359:385–404; 1967.CrossRefGoogle Scholar
  25. Peleg, L.; Dotan, A.; Ashkenazi, I. E. Biological oscillations in human red blood cells and in blood cell ghosts. J. Supranol. Struct. and Cell. Biochem. Suppl. 5:112; 1981.Google Scholar
  26. Queiroz-Claret, C.; Queiroz, O. Spontaneous circadian rhythms of enzyme activity phosphoenolpyruvate carboxylase and malate dehydrogenase fromKalanchoe blossfeldiana in extracts kept under constant conditions. C. R. Seances Acad. Sci. Ser. III 292:1237–1240; 1981.Google Scholar
  27. Radha, E.; Timothy, D. H. Glutathione level in human platelets display a circadian rhythm in vitro. Thromb. Res. 40:823–831; 1985.PubMedCrossRefGoogle Scholar
  28. Ramot, B.; Brok-Simoni, F.; Chweidan, E., et al. Blood leukocyte enzymes: diurnal rhythm of activity in isolated lymphocytes of normal subjects and chronic lymphatic leukemia patients. Br. J. Haematol. 34:79–85; 1976.PubMedGoogle Scholar
  29. Reinberg, A.; Smolensky, M. H. Biological rhythms and medicine. New York: Spring-Verlag; 1983.Google Scholar
  30. Robertson, L. M.; Takahashi, J. S. Circadian clock in cell culture: II. In vitro photic entrainment of melatonin oscillation from dissociated chick pineal cells. J. Neurosci. 8:22–30; 1988.PubMedGoogle Scholar
  31. Solti, M.; Friedrich, P. Partial reversible inactivation of enzymes to binding to the human erythrocyte membrane. Mol. Cell. Biochem. 10:145–152; 1976.PubMedCrossRefGoogle Scholar
  32. Tritsch, G. L.; Halberg, F. Individualized circadian rhythmometry of adenosine deaminase activity in red blood cells of healthy woman. Chronobiologia 6:164; 1979.Google Scholar
  33. Velick, S. F. Glyceraldehyde-3-phosphate dehydrogenase from muscle. In: Colowick, S. P.; Kaplan, N. O., eds. Methods in enzymology, vol. I. New York: Academic Press; 1955:401–406.CrossRefGoogle Scholar
  34. Voisin, P.; Martin, C.; Collin, J. P. Alpha 2-adrenergic regulation of arylalkylamine-N-acetyltransferase in organ culture chick pineal gland: characterization with agonists and modulation of experimentally stimulated enzyme activity. J. Neurochem. 49:1421–1426; 1987.PubMedCrossRefGoogle Scholar
  35. Vokac, M. A. A comprehensive system of cosinor treatment programs written for the Apple II microcomputer. Chronobiol. Int. 1:87–92; 1984.PubMedGoogle Scholar

Copyright information

© Tissue Culture Association 1990

Authors and Affiliations

  • L. Peleg
    • 1
  • A. Dotan
    • 1
  • P. Luzato
    • 1
  • I. E. Ashkenazi
    • 1
  1. 1.Unit of Chronobiology, Department of Human Genetics, Sackler School of MedicineTel Aviv UniversityTel AvivIsrael

Personalised recommendations