In Vitro Cellular & Developmental Biology

, Volume 24, Issue 9, pp 871–877 | Cite as

Cytoplasmic calcium response to fluid shear stress in cultured vascular endothelial cells

  • Joji Ando
  • Teruhiko Komatsuda
  • Akira Kamiya
Regular Papers


Vascular endothelial cells modulate their structure and functions in response to changes in hemodynamic forces such as fluid shear stress. We have studied how endothelial cells perceive the shearing force generated by blood flow and the substance(s) that may mediate such a response. We identify cytoplasmic-free calcium ion (Ca++), a major component of an internal signaling system, as a mediator of the cellular response to fluid shear stress. Cultured monolayers of bovine aortic endothelial cells loaded with the highly fluorescent Ca++-sensitive dye Fura 2 were exposed to different levels of fluid shear stress in a specially designed flow chamber, and simultaneous changes in fluorescence intensity, reflecting the intracellular-free calcium concentration ([Ca++] i ), were monitored by photometric fluorescence microscopy. Application of shear stress to cells by fluid perfusion led to an immediate severalfold increase in fluorescence within 1 min, followed by a rapid decline for about 5 min, and finally a plateau somewhat higher than control levels during the entire period of the stress application. Repeated application of the stress induced similar peak and plateau levels of [Ca++] i but at reduced magnitudes of response. These responses were observed even in Ca++-free medium. Thus, a shear stress transducer might exist in endothelial cells, which perceives the shearing force on the membrane as a stimulus and mediates the signal to increase cytosolic free Ca++.

Key words

cytoplasmic calcium vascular endothelial cell fluid shear stress Fura 2 photometric fluorescence microscope hemodynamic forces 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abboud, C. N., Scully, S. P., Lichtman, A. H., et al. The requirements for ionized calcium and magnesium in lymphocyte proliferation. J. Cell. Physiol. 22:64–72; 1985.CrossRefGoogle Scholar
  2. 2.
    Ando, J., Nomura, H., Kamiya, A. The effect of fluid shear stress on the migration and proliferation of cultured endothelial cells. Microvasc. Res. 33:62–70; 1987.PubMedCrossRefGoogle Scholar
  3. 3.
    Becker, P. L., Fay, F. S. Photobleaching of Fura-2 and its effects on determination of calcium concentrations. Am. J. Physiol. 253:C613–618; 1987.PubMedGoogle Scholar
  4. 4.
    Berk, B. C., Brock, T. A., Webb, R. C., et al. Epidermal growth factor, a vascular smooth muscle mitogen, induces rat aortic contraction. J. Clin. Invest. 75:1083–1086; 1985.PubMedCrossRefGoogle Scholar
  5. 5.
    Berk, B. C.; Alexander, R. W.; Brock, T. A., et al. Vasocontriction: A new activity for platelet-derived growth factor. Science 232:87–90; 1986.PubMedCrossRefGoogle Scholar
  6. 6.
    Berridge, M. J.. The interaction of cyclic nucleotides and calcium in the control of cellular activity. In: Greengard, P.; Robinson, G. A., eds. Advances in cyclic nucleotide research 6. New York: Raven Press, 1975:1–98.Google Scholar
  7. 7.
    Berridge, M. J. The molecular basis of communication within the cell. Sci. Am. 253:124–134; 1985.CrossRefGoogle Scholar
  8. 8.
    Carafoli, E.; Penniston, J. T. The calcium signal. Sci. Am. 253:50–58; 1985.Google Scholar
  9. 9.
    Chen, T. C. Microscopic demonstration of mycoplasma contamination in cell culture media. TCA Manual. 1:229–232; 1976.CrossRefGoogle Scholar
  10. 10.
    Cox, R. H. Physiology and hemodynamic of the macrocirculation. In: Stegbens, W. E., ed. Hemodynamics and the blood wall. Springfield, IL: C. C. Thomas, 1979:75–156.Google Scholar
  11. 11.
    Davies, P. F.. Quantitative aspects of endocytosis in cultured endothelial cells. In: Jaffe, E. A., ed. Biology of endothelial cells. Boston: Martinus Nijhoff Publishers, 1984:365–376.Google Scholar
  12. 12.
    Dewey, C. F., Bussolari, S. R., Gimbrone, M. A., et al. The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Engr. 103:177–184; 1981.CrossRefGoogle Scholar
  13. 13.
    Frangos, J. A., Eskin, S. G.; McIntire, L. V., et al. Flow effects on prostacyclin production by cultured human endothelial cells. Science 22:1477–1479; 1985.CrossRefGoogle Scholar
  14. 14.
    Franke, R. P., Grafe, M., Schnittler, H., et al. Induction of human vascular endothelial stress fibers by fluid shear stress. Nature 307:648–649; 1984.PubMedCrossRefGoogle Scholar
  15. 15.
    Fraser, D.; Jones, G.; Kooh, S. W., et al. Analysis of calcium in biological fluids. In: Tietz, N. W., ed. Fundamentals of clinical chemistry. W. B. Saunders Company 1987∶716–721.Google Scholar
  16. 16.
    Grynkiewicz, G., Poenie, M., Tsien, R. Y. A new generation of calcium indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:3440–3450; 1985.PubMedGoogle Scholar
  17. 17.
    Guyton, J. R., Hartley, C. J. Flow restriction of one carotid artery in juvenile rats inhibits growth of arterial diameter. Am. J. Physiol. 248:H540–546; 1985.PubMedGoogle Scholar
  18. 18.
    Hudicka, O Growth of vessels—historical review. Prog. Appl. Microcirc. 4:1–8; 1984.Google Scholar
  19. 19.
    Hunt, C. C. The physiology of muscle receptors. In: Hunt, C. C., ed. Muscle receptors. New York: Springer-Verlag, 1974:192–230.Google Scholar
  20. 20.
    Jaffe, E. A. Physiologic functions of normal endothelial cells. Ann. NY. Acad. Sci. 454:279–291; 1985.PubMedCrossRefGoogle Scholar
  21. 21.
    Kamiya, A., Togawa, T Adaptive regulation of wall stress to flow change in the canine carotid artery. Am. J. Physiol. 239:H14-H21; 1980.PubMedGoogle Scholar
  22. 22.
    Lansman, J. B., Hallman, T. J., Rink, T. J. Single stretchactivated ion channels in vascular endothelial cells as mechanotransducers. Nature 325:811–813; 1987.PubMedCrossRefGoogle Scholar
  23. 23.
    Lartigue, O. G. Calcium and ionophore A-23187 as initiators of DNA replication in the pluripotent haemopoietic stem cell. Cell. Tissue Kinet. 9:533–540; 1976.Google Scholar
  24. 24.
    Maino, V. C.; Green, N. M.; Crumpton, M. J. The role of calcium ions in initiating transformation of lymphocytes. Nature 252:324–327; 1974.CrossRefGoogle Scholar
  25. 25.
    Masuda, H.; Shozawa, T.; Hosoda, S., et al. Cytoplasmic microfilaments in endothelial cells of flow loaded canine carotid arteries. Heart Vessels 1:65–69; 1985.PubMedCrossRefGoogle Scholar
  26. 26.
    McNeil, P. L., McKenna, M. P., Taylor, D. L. A transient rise in cytosolic calcium follows stimulation of quiescent cells with growth factors and is inhibitable with phorbol myristate acetate. J. Cell. Biol. 101:370–372; 1985.CrossRefGoogle Scholar
  27. 27.
    Moisescu, D. G.; Push, H. A. A pH-metric method for the determination of the relative concentration of calcium to EGTA. Pflugers. Arch. 355:R122; 1975.Google Scholar
  28. 28.
    Moolenaar, W. H.; Tertoolen, L. G. J.; de Laat, S. W. Growth factors immediately raise cytoplasmic free Ca2+ in human fibroblasts. J. Biol. Chem. 259:8066–8069; 1984.PubMedGoogle Scholar
  29. 29.
    Netland, P. A., Zetter, B. R., Via, D. P., et al. In situ labeling vascular endothelium with fluorescent acetylated low density lipoprotein. Histochem. J. 17:1309–1320; 1985.PubMedCrossRefGoogle Scholar
  30. 30.
    Patton, H. D. Receptor mechanism. In: Ruch, T. C.; Patton, H. D., eds. Physiology and biophysics. Philadelphia: W. B. Saunders and Company, 1965:95–112.Google Scholar
  31. 31.
    Prados, J. W., Peebles, F. N. Two-dimensional laminar-flow analysis, utilizing a doubly refracting liquid. AICHE 5:225–234; 1959.CrossRefGoogle Scholar
  32. 32.
    Rosen, L. A.; Hollis, T. M., Sharma M. G. Alterations in bovine endothelial histidine decarboxylase activity following exposure to shearing stresses. Exp. Mol. Pathol. 20:329–343; 1974.PubMedCrossRefGoogle Scholar
  33. 33.
    Rushmer, R. F. Control of systemic arterial pressure. In: Cardiovascular dynamics. Philadelphia: W. B. Saunders Company, 1976:186–196.Google Scholar
  34. 34.
    Schlighting, H. Turbulent flow through pipes. In: Boundary layer theory. New York: McGraw Hill Co., 1960:502–533.Google Scholar
  35. 35.
    Schmidt, R. F. Fundamentals of sensory physiology. New York: Springer-Verlag, 1981:95–101.Google Scholar
  36. 36.
    Schwartz, S. M. Selection and characterization of bovine aortic endothelial cells. In Vitro 14:966–980; 1978.PubMedCrossRefGoogle Scholar
  37. 37.
    Stebens, W. E. The role of hemodynamics in the pathogenesis of athereosclerosis. Prog. Cardiovasc. Dis. 18:89–103; 1975.CrossRefGoogle Scholar
  38. 38.
    Tsien, R. Y., Pozzan, T., Rink, T. J. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J. Cell. Biol. 94:325–334; 1982.PubMedCrossRefGoogle Scholar
  39. 39.
    Williams, D. A.; Fogarty, K. E., Tsien, R. Y., et al. Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using Fura-2. Nature 318:558–561; 1985.PubMedCrossRefGoogle Scholar

Copyright information

© Tissue Culture Association, Inc 1988

Authors and Affiliations

  • Joji Ando
    • 1
  • Teruhiko Komatsuda
    • 1
  • Akira Kamiya
    • 1
  1. 1.Research Institute of Applied ElectricityHokkaido UniversitySapporoJapan

Personalised recommendations