In Vitro Cellular & Developmental Biology

, Volume 26, Issue 4, pp 411–418

Long-term culture of normal and cystic fibrosis epithelial cells grown under serum-free conditions

  • Dieter C. Gruenert
  • Carol B. Basbaum
  • Jonathan H. Widdicombe
Regular Papers


The understanding of pathways associated with differentiated function in human epithelial cells has been enhanced by the development of methods for the short-term culture of human epithelial cells. In general these methods involve the use of serum. The subculture and maintenance of epithelial cells in long-term culture has been more problematic. A serum-free medium developed for human bronchial epithelial cells was slightly modified and found to be useful for the subculture and long-term maintenance of not only bronchial epithelial cells, but also tracheal, nasal polyp, and sweat gland epithelial cells from either normal or cystic fibrosis individuals. The cells maintained epithelial-specific characteristics after multiple subcultures. Monolayers of epithelial cells showed junctional complex formation, the presence of keratin, and micro villi. Functional studies with Ussing chambers showed short circuit current (Isc) responses to isoproterenol, bradykinin, or calcium ionophore (A23187) in subcultured tracheal and bronchial cells.

Key words

human epithelial differentiation subculture cystic fibrosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Banks-Schlegel, S. P. Isolation, cultivation, and characterization of normal human esophageal epithelial cells. J. Tissue Cult. Methods 9:95–105; 1985.CrossRefGoogle Scholar
  2. 2.
    Boucher, R. C.; Larsen, E. H. Comparison of ion transport by cultured secretory and absorptive canine airway epithelia. Am. J. Physiol. 254:C535-C547; 1988.PubMedGoogle Scholar
  3. 3.
    Boyce, S. T.; Ham, R. G. Cultivation, frozen storage, and clonal growth on normal human epidermal keratinocytes in serum-free media. J. Tissue Cult. Methods 9:83–93; 1985.CrossRefGoogle Scholar
  4. 4.
    Coleman, D. L.; Tuet, I. K.; Widdicombe, J. H. Electrical properties of dog tracheal epithelial cells grown in monolayer culture. Am. J. Physiol. 246:C355-C359; 1984.PubMedGoogle Scholar
  5. 5.
    Cristofalo, V. J.; Sharf, B. B. Cellular senescence and DNA synthesis. Exp. Cell Res. 76:419–427; 1973.PubMedCrossRefGoogle Scholar
  6. 6.
    Gibson-D'Ambrosio, R. E.; Samuel, M.; Chang, C. C., et al. Characteristics of long-term human epithelial cell cultures derived from normal human fetal kidney. In Vitro Cell. Dev. Biol. 23:279–287; 1987.PubMedGoogle Scholar
  7. 7.
    Gruenert, D. C. Differentiated properties of human epithelial cells transformed in vitro. Bio Techniques 5:740–749; 1987.Google Scholar
  8. 8.
    Gruenert, D. C.; Basbaum, C. B.; Welsh, M. J., et al. Characterization of human tracheal epithelial cells transformed by an origin-defective simian virus 40. Proc. Natl. Acad. Sci. USA 85:5951–5955; 1988.PubMedCrossRefGoogle Scholar
  9. 9.
    Knowles, M.; Murray, G.; Shallal, J., et al. Bioelectric properties and ion flow across excised human bronchi. J. Applied Physiol. 56:868–877; 1984.Google Scholar
  10. 10.
    Kraus, M. E.; Hagiwara, G.; Chen, J., et al. Ion channels in normal human and cystic fibrosis cultured sweet gland cells. Am. J. Physiol. 257:C129-C140; 1989.Google Scholar
  11. 11.
    Lechner, J. F.; Babcock, M. S.; Marnell, M., et al. Normal human prostatic epithelial cell cultures. Methods Cell. Biol. 21B:195–225; 1980.PubMedCrossRefGoogle Scholar
  12. 12.
    Lechner, J. F.; LaVeck, M. A. A serum-free method for culturing normal human bronchial epithelial cells at clonal density. J. Tissue Cult. Methods 9:43–48; 1985.CrossRefGoogle Scholar
  13. 13.
    Li, M.; McCann, J. D.; Liedtke, C., et al. Cyclic AMP-dependent protein kinase opens chloride channels in normal but not cystic fibrosis airway epithelium. Nature 331:358–360; 1988.PubMedCrossRefGoogle Scholar
  14. 14.
    Masui, T.; Wakefield, L. M.; Lechner, J. F., et al. Type B transforming growth factor is the primary differentiation-inducing serum factor for normal human bronchial epithelial cells. Proc. Natl. Acad. Sci. USA 83:2438–2442; 1986.PubMedCrossRefGoogle Scholar
  15. 15.
    Noyes, I.; Milo, G.; Cunningham, C. Establishment of proliferating human epithelial cells in vitro from cell suspensions of neonatal foreskin. Tissue Cult. Manual 5:1173–1175; 1980.CrossRefGoogle Scholar
  16. 16.
    Peehl, D. M. Serial culture of adult human prostatic epithelial cells. J. Tissue Cult. Methods 9:53–60; 1985.CrossRefGoogle Scholar
  17. 17.
    Price, F. M.; Taylor, W. G.; Camalier, R. F. et al. Approaches to enhanced proliferation of human epidermal keratinocytes in mass culture. JNCI 70:853–861; 1983.PubMedGoogle Scholar
  18. 18.
    Quinton, P. M. Chloride impermeanbility in cystic fibrosis. Nature 301:421–422; 1983.PubMedCrossRefGoogle Scholar
  19. 19.
    Rheinwald, J. G.; Green, H. Serial cultivation of strains of human epidermal keratinocytes. The formation of keratinizing colonies from single cells. Cell 6:331–343; 1975.PubMedCrossRefGoogle Scholar
  20. 20.
    Schoumacher, R. A.; Shoemaker, R. L.; Holm, D. R., et al. Phosphorylation fails to activate chloride channels from cystic fibrosis airway cells. Nature 330:752–754; 1987.PubMedCrossRefGoogle Scholar
  21. 21.
    Stampfer, M.; Hallowes, R. C.; Hackett, A. J. Growth of normal human mammary cells in culture. In Vitro 16:415–425; 1980.PubMedCrossRefGoogle Scholar
  22. 22.
    Stampfer, M. R. Isolation and growth of human mammary epithelial cells. J. Tissue Cult. Methods 9:107–115; 1985.CrossRefGoogle Scholar
  23. 23.
    Talamo, R. C.; Rosenstein, B. T.; Berninger, R. W. Cystic fibrosis. In: Stanbury, J. B.; Wyngaarden, J. B., eds. Metabolic basis of inherited disease. New York: McGraw-Hill; 1983:1889–1917.Google Scholar
  24. 24.
    Van Scott, M. R.; Yankaskas J. R.; Boucher, R. C. Culture of airway epithelial cells: research techniques. Exp. Lung Res. 11:75–94; 1986.PubMedGoogle Scholar
  25. 25.
    Welsh, M. J. Electrolyte transport by airway epithelia. Physiol. Rev. 67:1143–1184; 1985.Google Scholar
  26. 26.
    Wheelock, M. J.; Buck, C. A.; Bechtol, K. B. et al. Soluble 80-kd fragment of cell-CAM 120/80 disrupts cell-cell adhesion. J. Cell. Biochem. 34:187–202; 1987.PubMedCrossRefGoogle Scholar
  27. 27.
    Widdicombe, J. H.; Coleman, D. L.; Finkbeiner, W. E., et al. Electrical properties of monolayers cultured from cells of human mucosa. J. Appl. Physiol. 58:1729–1735; 1985.PubMedGoogle Scholar
  28. 28.
    Widdicombe, J. H.; Welsh, M. J.; Finkbeiner, W. E. Cystic fibrosis decreases the apical membrane chloride permeability of monolayers cultured from cells of tracheal epithelium. Proc. Natl. Acad. Sci. USA 82:6167–6171; 1985.PubMedCrossRefGoogle Scholar
  29. 29.
    Wu, R.; Yankaskas, J.; Cheng, E., et al. Growth and differentiation of human nasal epithelial cells in culture. Serum-free, hormone-supplemented medium and proteoglycan synthesis. Am. Rev. Respir. Dis. 132:311–320; 1985.PubMedGoogle Scholar
  30. 30.
    Yankaskas, J. R.; Cotton, C. U.; Knowles, M. R. et al. Culture of human nasal epithelial cells on collagen matrix supports. Am. Rev. Respir Dis. 132:1281–1287; 1985.PubMedGoogle Scholar

Copyright information

© Tissue Culture Association 1990

Authors and Affiliations

  • Dieter C. Gruenert
    • 1
    • 2
  • Carol B. Basbaum
    • 4
  • Jonathan H. Widdicombe
    • 2
    • 3
  1. 1.Cardiovascular Research InstituteUniversity of California San FranciscoSan Francisco
  2. 2.Cystic Fibrosis Research CenterUniversity of California, San FranciscoSan Francisco
  3. 3.Department of PhysiologyUniversity of California, San FranciscoSan Francisco
  4. 4.Department of AnatomyUniversity of California, San FranciscoSan Francisco

Personalised recommendations