Advertisement

In Vitro Cellular & Developmental Biology

, Volume 25, Issue 8, pp 723–729 | Cite as

Establishment of five human myeloma cell lines

  • Masayoshi Namba
  • Takemi Ohtsuki
  • Masaharu Mori
  • Atsushi Togawa
  • Hideho Wada
  • Takashi Sugihara
  • Yoshihito Yawata
  • Tetsuo Kimoto
Regular Papers

Summary

Five human myeloma cell lines, KMM-1, KMS-5, KMS-11, KMS-12- PE, and KMS-12-BM, have been established at Kawasaki Medical School since 1980. As the KMS-12-PE and KMS-12-BM lines were obtained from the same patient, these five cell lines have been derived from four patients with multiple myeloma. The five myeloma cell lines are stably growing at present in RPMI 1640 medium supplemented with 10% fetal bovine serum. They can also grow in a defined culture medium without serum. That these cell lines were, human myeloma cells was confirmed by the following findings. Ultranstructually, all five cell lines showed features characteristic of plasma cells. KMM-1 and KMS-11 cells secreted lambda and kappa chains into the culture medium, respectively, but the other cell lines produced no immunoglobulins. KMM-1 expressed cytoplasmic lambda antigen, KMS-5 showed cytoplasmic delta, and KMS-11 expressed surface kappa, whereas KMS-12-PE and KMS-12-BM cells showed no surface or cytoplasmic immunoglobulins. Regarding reaction with a monoclonal plasma cell antibody (PCA-1), four of the five lines were positive, the exception being KMS-5. Another monoclonal antibody (CD38), which also recognizes plasma cells, reponded to KMM-1, KMS-12-PE, and KSM-12-BM. KMS-5 cells expressed acute lymphoblastic leukemia antigens (CALLA). These data suggest that such lines as KMM-1, KMS-11, KMS-12-PE, and KMS-12-BM represent later stages of B-cell differentiation, and that KMS-5 represents a relatively early stage of B-cell differentiation. All the cell lines lacked Epstein-Barr virus nuclear antigen, showed abnormal karyotypes of human origin, and differed from each other in the isozyme patterns examined. Only KMS-5 was tumorigenic when transplanted subcutaneously into nude mice.

Key words

myeloma B-cell hybridoma culture human 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, K. C.; Park, E. K.; Bates, M. P., et al. Antigens on human plasma cells identified by monoclonal antibodies. J. Immunol. 130:1132–1138; 1983.PubMedGoogle Scholar
  2. 2.
    Caligaris-Cappio, F.; Bergui, L.; Tesio, L., et al. Identification of malignant plasma cell precursors in the bone marrow of multiple myeloma. J. Clin. Invest. 76:1243–1251; 1985.PubMedCrossRefGoogle Scholar
  3. 3.
    Chen, T. R. In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp. Cell. Res. 104:255–262; 1977.PubMedCrossRefGoogle Scholar
  4. 4.
    Diehl, V.; Schaadt, M.; Kirchner, H., et al. Long-term cultivation of plasma cell leukemia cells and autologous lymphoblasts (LCL) in vitro: a comparative study. Blut 36:331–338; 1978.PubMedCrossRefGoogle Scholar
  5. 5.
    Donelli, A.; Narni, F.; Tabilio, A., et al. Establishment and characterization of a human IgA-x-secreting plasma cell line (MT3). Int. J. Cancer 40:383–388; 1987.PubMedCrossRefGoogle Scholar
  6. 6.
    Durie, B. G. M.; Grogan, T. M. CALLA-positive myeloma: an aggressive subtype with poor survival. Blood 66:229–232; 1985.PubMedGoogle Scholar
  7. 7.
    Durie, B. G. M.; Vela, E.; Baum, V., et al. Establishmment of two new myeloma cell lines from bilateral pleural effusions: evidence for sequential in vivo clonal change. Blood 66:548–555; 1985.PubMedGoogle Scholar
  8. 8.
    Garrett, R.; Durie, B. G. M.; Nedwin, G. E., et al. Production of lymphotoxin, a bone-resorbing cytokine, by cultured human myeloma cells. N. Engl. J. Med. 317:526–532; 1987.PubMedCrossRefGoogle Scholar
  9. 9.
    Gazdar, A. F.; Oie, H. K.; Kirsch, I. R., et al. Establishment and characterization of a human plasma cell myeloma culture having a rearranged cellular myc protooncogene. Blood 67:1542–1549;1986.PubMedGoogle Scholar
  10. 10.
    Halton, D. M.; Peterson, W. D., Jr.; Hukku, B.. Cell culture quality control by rapid isoenzymatic characterization. In Vitro 19:16–24; 1983.PubMedCrossRefGoogle Scholar
  11. 11.
    Hamburger, A. W.; Kim, M. B.; Salmon, S. E., The nature of cells generating human myeloma colonies in vitro. J. Cell. Physiol. 98:371–376; 1979.PubMedCrossRefGoogle Scholar
  12. 12.
    Jernberg, H.; Nilsson, K.; Zech, L., et al. Establishment and phenotypic characterization of three new human myeloma cell lines (U-1957, U-1958, and U-1996). Blood 69:1605–1612; 1987a.PubMedGoogle Scholar
  13. 13.
    Jernberg, H.; Bjorklund, G.; Nilsson, K. Establishment, of a new human myeloma cell line (U-2030) and selection of a HAT-sensitive subline. Int. J. Cancer39:745–751; 1987b.PubMedCrossRefGoogle Scholar
  14. 14.
    Joshua, D. E.; Ioannidis, R.; Brown, R., et al. Multiple myeloma: relationship between light chain isotype suppression, labelling index of plasma cells, and CD38 expression on peripheral blood lymphocytes. Am. J. Hematol. 29:5–11; 1988.PubMedCrossRefGoogle Scholar
  15. 15.
    Karpas, A.; Fischer, P.; Swirsky, D. Human myeloma cell line carrying a Philadelphia chromosome. Science 216:997–999; 1982.PubMedCrossRefGoogle Scholar
  16. 16.
    Katagiri, S.; Yonezawa, T.; Kuyama, J., et al. Two distinct human myeloma cell lines originating from one patient with myeloma. Int. J. Cancer 36:241–246; 1985.PubMedCrossRefGoogle Scholar
  17. 17.
    Kawano, M.; Hirano, T.; Matsuda, T., et al. Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature 332:83–85; 1988.PubMedCrossRefGoogle Scholar
  18. 18.
    Klein, B.; Jourdan, M.; Vazquez, A., et al. Production of growth factors by human myeloma cells. Cancer Res. 47:4856–4860; 1987.PubMedGoogle Scholar
  19. 19.
    Lohmeyer, J.; Hadam, M.; Santoso, S., et al. Establishment and characterization of a permanent human IgA2/kappa myeloma cell line. Br. J. Haematol. 69:335–343; 1988PubMedGoogle Scholar
  20. 20.
    Matsuoka, Y.; Moore, G. E.; Yagi, Y., et al. Production of free light chains of immunoglobulin by a hematopoietic cell line derived from a patient with multiple myeloma. Proc. Soc. Exp. Biol. Med. 125:1246–1250; 1967.PubMedGoogle Scholar
  21. 21.
    Matsuzaki, H.; Hata, H.; Takeya, M., et al. Establishment and characterization of an amylase-producing human myeloma cell line. Blood 72:978–982; 1988.PubMedGoogle Scholar
  22. 22.
    Miller, C. H.; Carbonell, A.; Peng, R., et al. A human plasma cell line. Induction and characterization. Cancer 49:2091–2096; 1982.PubMedCrossRefGoogle Scholar
  23. 23.
    Nadler, L. M.; Stashenko, P.; Hardy, R., et al. Characterization of a human B cell-specific antigen (B2) distinct from Bl. J. Immunol. 126:1941–1947; 1981.PubMedGoogle Scholar
  24. 24.
    Namba, M.; Nishitani, K.; Hyodoh, F., et al. Cultivation of human myeloma cells. In: Umeda, M.; Koyama, H.; Minowada, J., et al., eds. Biotechnology of mammalian cells. Tokyo: Japan Science Society Press, Berlin: Springer-Verlag; 1987:3–14.Google Scholar
  25. 25.
    Neckers, L. M.; Nordan, R. P. Regulation of murine plasmacytoma transferrin receptor expression and G1 traversal by plasmacytoma cell growth factor. J. Cell. Physiol. 135:495–501; 1988.PubMedCrossRefGoogle Scholar
  26. 26.
    Niho, Y.; Shibuya, T.; Yamasaki, K., et al. The estabishment of a human myeloma cell line elaborating λ-light chain protein. Int. J. Cell Cloning 2:161–172; 1984.PubMedGoogle Scholar
  27. 27.
    Nilsson, K.; Bennich, H.; Johansson, S. G. O., et al. Established immunoglobulin producing myeloma (IgE) and lymphoblastoid (IgG) cell lines from an IgE myeloma patient. Clin. Exp. Immunol. 7:477–489; 1970.PubMedGoogle Scholar
  28. 28.
    Nordan, R. P; Potter, M. A macrophage-derived factor required by plasmacytomas for survival and proliferation in vitro. Science 233:566–569; 1986.PubMedCrossRefGoogle Scholar
  29. 29.
    O’Brien, S. J; Shannon, J. E.; Gail, M. H. A molecular approach to the identification and individualization of human and animal cells in cultures: isozyme and allozyme genetic signatures. In Vitro 16:119–135; 1980.PubMedGoogle Scholar
  30. 30.
    Ohtsuki, T.; Yawata, Y.; Namba, M. Cell growth kinetics of cultured human myeloma cell lines, KMM-1 and KMS-5. Acta Haematol. Jpn. 51:1052–1058; 1988.Google Scholar
  31. 31.
    Olsson, L. Human monoclonal antibodies in experimental cancer research. JNCI 75:397–403; 1985.PubMedGoogle Scholar
  32. 32.
    Reedman, B. M.; Klein, G. Cellular localization of an Epstein-Barr virus (EBV) associated complement-fixing antigen in producer and non-producer lymphoblastoid cell lines. Int. J. Cancer. 11:499–520; 1973.PubMedCrossRefGoogle Scholar
  33. 33.
    Reinherz, E. L.; Kung, P. C.; Goldstein, G., et al. Discrete stages of human intrathymic differentiation: analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage. Proc. Natl. Acad. Sci. USA 77:1588–1592; 1980.PubMedCrossRefGoogle Scholar
  34. 34.
    Seabright, M. The use of proteolytic enzymes for the mapping of structural rearrangements in the chromosomes of man. Chromosoma 36:204–210; 1972.PubMedCrossRefGoogle Scholar
  35. 35.
    Stashenko, P.; Nadler, L. M.; Hardy, R., et al. Characterization of a human B lymphocyte-specific antigen. J. Immunol. 125:1678–1685; 1980.PubMedGoogle Scholar
  36. 36.
    Togawa, A.; Inoue, N.; Miyamoto, K., et al. Establishment and characterization of a human myeloma cell line (KMM-1). Int. J. Cancer 29:495–500; 1982.PubMedCrossRefGoogle Scholar

Copyright information

© Tissue Culture Association, Inc 1989

Authors and Affiliations

  • Masayoshi Namba
    • 4
  • Takemi Ohtsuki
    • 1
  • Masaharu Mori
    • 2
  • Atsushi Togawa
    • 3
  • Hideho Wada
    • 1
  • Takashi Sugihara
    • 1
  • Yoshihito Yawata
    • 1
  • Tetsuo Kimoto
    • 4
  1. 1.Division of Hematology, Department of Internal MedicineKawasaki Medical SchoolKurashikiJapan
  2. 2.Department of PathologyOkayama University Medical SchoolOkayama
  3. 3.Division of Internal MedicineNational Medical CenterTokyo
  4. 4.Department of PathologyKawasaki Medical SchoolOkayamaJapan

Personalised recommendations