In Vitro Cellular & Developmental Biology

, Volume 24, Issue 3, pp 166–174 | Cite as

Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen gel

  • Herman H. Vandenburgh
  • Patricia Karlisch
  • Lynne Farr
Regular Papers


Highly contractile skeletal myotubes differentiated in tissue culture are normally difficult to maintain on collagen-coated tissue culture dishes for extended periods because of their propensity to detach as a sheet of cells from their substratum. This detachment results in the release of mechanical tension in the growing cell “sheet” and, consequently, loss of cellular protein. We developed a simple method of culturing high density contractile primary avian myotubes embedded in a collagen gel matrix (collagel) attached to either a stainless steel mesh or nylon support structure. With this system the cells are maintained in a highly contractile state for extended periods in vitro under tension. Structural integrity of the myotubes can be maintained for up to 10 d in basal medium without serum or embryo extract. Total cellular protein and myosin heavy chain accumulation in the cells can be maintained for weeks at levels which are two to three times those found in timematched controls that are under little tension. Morphologically, the myotubes are well differentiated with structural characteristics of neonatal myofibers. This new collagel culture system should prove useful in the analysis of in vitro gene expression during myotube to myofiber differentiation and its regulation by various environmental factors such as medium growth factors, innervation, and mechanical activity.

Key words

skeletal muscle differentiation collagen myosin external lamina 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashmore, C. R.; Summers, P. J. Stretch-induced growth in chicken wing muscles: Myofibrillar proliferation. Am. J. Physiol. 51:C93-C97; 1981.Google Scholar
  2. 2.
    Bell, E.; Ivarsson, B.; Merrill, C. Production of tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potentialin vitro. Proc. Natl. Acad. Sci USA 76:1274–1278; 1979.PubMedCrossRefGoogle Scholar
  3. 3.
    Buckingham, M. Muscle cells in tissue culture. Int. Rev. Biochem. 15:315–322; 1977.Google Scholar
  4. 4.
    Buckingham, M. E. Actin and myosin multigene families: Their expression during the formation of skeletal muscle. Essays Biochem. 20:77–109; 1985.PubMedGoogle Scholar
  5. 5.
    Caplan, A. I.; Fitzman, M. Y.; Eppenberger, H. M. Molecular and cell isoforms during development. Science 221:921–927; 1983.PubMedCrossRefGoogle Scholar
  6. 6.
    Chambard, M.; Gabron, J.; Mauchamp, J. Influence of collagen gel on the orientation of epithelial cell polarity: Follicle formation from isolated thyroid cells and from preformed monolayers. J. Cell Biol. 91:157–166; 1981.PubMedCrossRefGoogle Scholar
  7. 7.
    Coleman, J. R.; Coleman, A. W. Muscle differentiation and macromolecular synthesis. J. Cell. Physiol. 72:19–34; 1968.PubMedCrossRefGoogle Scholar
  8. 8.
    De la Haba G.; Kamali, H. M.; Tiede, D. M. Myogenesis of avian striated musclein vitro: Role of collagen in myofiber formation. Proc. Natl. Acad. Sci. USA 72:2729–2732; 1975.PubMedCrossRefGoogle Scholar
  9. 9.
    Ecob, M.; Butler-Browne, G. S.; Whalen, R. G. The adult fast isozyme of myosin is present in a nerve-muscle tissue culture system. Differentiation 25:84–87; 1983.PubMedCrossRefGoogle Scholar
  10. 10.
    Fambrough, D. M.; Bayne, E. K.; Gardner, J. M., et al. Monoclonal antibodies to skeletal muscle cell surface. In: Brockes, J., ed.Neuroimmunology, New York: Plenum Press; 1982: 49–89.Google Scholar
  11. 11.
    Fischman, D. A. Myofibrillar assembly in skeletal muscle. In: Bourne, G. H., ed. The structure and function of muscle. vol. 1. New York: Academic Press; 1973:75–148.Google Scholar
  12. 12.
    Gardner, J. M.; Fambrough D. Fibronectin expression during myogenesis. J. Cell Biol. 96:474–485; 1983.PubMedCrossRefGoogle Scholar
  13. 13.
    Hall, H. G.; Farson, D. A.; Bissell, M. J. Human formation by epithelial cell lines in response to collagen overlay: A morphogenetic model in culture. Proc. Natl. Acad. Sci. USA 79:4672–4676; 1982.PubMedCrossRefGoogle Scholar
  14. 14.
    Hay, E. D. Cell biology of the extracellular matrix. New York: Plenum Press; 1982.Google Scholar
  15. 15.
    Hauschka S. D.; Konigsberg, I. R. The influence of collagen on the development of muscle clones. Proc. Natl. Acad. Sci USA 55:119–126; 1966.PubMedCrossRefGoogle Scholar
  16. 16.
    Jablecki, C.; Kaufman, S. Myosin adenosine triphosphatase activity during work-induced growth of slow and fast skeletal muscle in the normal rat. J. Biol. Chem. 248:1056–1062; 1973.PubMedGoogle Scholar
  17. 17.
    Kelly, A. M.; Zacks, S. I. The histogenesis of rat intercostal muscle. J. Cell Biol. 42:135–153; 1969.PubMedCrossRefGoogle Scholar
  18. 18.
    Kleinman, H. K.; Klebe, R. J.; Martin, G. R. Role of collagenous matrices in the adhesion and growth of cells. J. Cell Biol. 88:473–485; 1981.PubMedCrossRefGoogle Scholar
  19. 19.
    Konigsberg, I. R.; McElvain, N.; Tootle, M., et al. The dissociability of DNA synthesis from the development of multinuclearity of muscle cell in culture. J. Biophys. Biochem. Cytol. 8:333–343; 1960.PubMedCrossRefGoogle Scholar
  20. 20.
    Konigsberg, I. R. Diffusion-mediated control of myoblast fusion. Dev. Biol 26:133–152; 1971.PubMedCrossRefGoogle Scholar
  21. 21.
    Labarca, C.; Paigen, K. A simple rapid and sensitive DNA assay procedure. Anal. Biochem. 102:344–352; 1980.PubMedCrossRefGoogle Scholar
  22. 22.
    Lowry, O. H.; Rosebrough, N. J.; Farr, A. L., et al. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275; 1954.Google Scholar
  23. 23.
    Moss, P. S.; Spector, D. H.; Glass, C. A., et al. Streptomycin retards the phenotypic maturation of chick myogenic cells. In Vitro 20:473–478; 1984.PubMedCrossRefGoogle Scholar
  24. 24.
    Murray, M. R. Skeletal muscle in culture. In: Bourne, G. H., ed. Structure and function of muscle, vol. I, part I. New York: Academic Press; 1972: 237–299.Google Scholar
  25. 25.
    Paterson, B.; Strohman, R. C. Myosin synthesis in cultures of differentiating chicken embryo skeletal muscle. Dev. Biol. 29:113–138; 1972.PubMedCrossRefGoogle Scholar
  26. 26.
    Sheehan, D. C.; Hrapchak, B. B. Theory and practice of histochemistry, 2nd ed. St. Louis: C. V. Mosby Co.; 1980: 143.Google Scholar
  27. 27.
    Stockdale, F. E.; Holtzer, H. DNA synthesis and myogenesis. Exp. Cell Res. 24:508–520; 1961.PubMedCrossRefGoogle Scholar
  28. 28.
    Vandenburgh, H. H. Separation of plasma membrane markers by glycerol-induced blistering of muscle cells. Biochem. Biophsy. Acta 466:302–314; 1977.CrossRefGoogle Scholar
  29. 29.
    Vandenburgh, H. H.; Kaufman, S.In Vitro model for stretch-induced hypertrophy of skeletal muscle. Science 203:265–268; 1979.PubMedCrossRefGoogle Scholar
  30. 30.
    Vandenburgh, H. H. Cell shape and growth regulation in skeletal muscle: exogenous versus endogenous factors. J. Cell Physiol. 116:363–371; 1983.PubMedCrossRefGoogle Scholar
  31. 31.
    Vandenburgh, H. H. Relationship of muscle growthin vitro to sodium pump activity and transmembrane potential. J. Cell Physiol. 119:283–295; 1984.PubMedCrossRefGoogle Scholar
  32. 32.
    Walker, C.; Strohman, R. Myosin turnover in cultured muscle fibers relaxed by tetrodotoxin. Exp. Cell Res. 116:341–348; 1978.PubMedCrossRefGoogle Scholar
  33. 33.
    Waterlow, J. C.; Garlick, P. J.; Millward, D. J., Editors. Protein turnover in mammalian tissues and in the whole body. Amsterdam, Netherlands: North-Holland; 1978:529–594.Google Scholar
  34. 34.
    Yang, J.; Richards, J.; Bowman, P., et al. Sustained growth and three-dimensional organization of primary mammary tumor epithelial cells embedded in collagen gels. Proc. Natl. Acad. Sci. USA 76:3401–3405; 1979.PubMedCrossRefGoogle Scholar

Copyright information

© Tissue Culture Association, Inc 1988

Authors and Affiliations

  • Herman H. Vandenburgh
    • 1
    • 2
  • Patricia Karlisch
    • 2
  • Lynne Farr
    • 2
  1. 1.Department of PathologyBrown UniversityProvidence
  2. 2.Department of Laboratory MedicineThe Miriam HospitalProvidence

Personalised recommendations