Keywords
Homotopy Group Whitehead Product Evaluation Subgroup Rational Homotopy Theory Rational Connectivity
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Berstein, I.: Homotopy andC of spaces of category 2. Comment. Math. Helv.35, 9–14 (1961)zbMATHCrossRefMathSciNetGoogle Scholar
- 2.Federer, H.: A study of function spaces by spectral sequences. Trans. Amer. Math. Soc.82, 340–361 (1956)zbMATHCrossRefMathSciNetGoogle Scholar
- 3.Felix, Y., Halperin, S.: Rational LS-category and its applications. Trans. Amer. Math. Soc.273, 1–37 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
- 4.Felix, Y., Halperin, S., Thomas, J.-C.: The homotopy Lie algebra for finite complexes. Inst. Hautes Études Sci. Publ. Math.56, 387–410 (1983)Google Scholar
- 5.Gottlieb, D.H.: On fibre spaces and the evaluation map. Ann. of Math. (2)87, 42–55 (1968).CrossRefMathSciNetGoogle Scholar
- 6.Gottlieb, D.H.: Evaluation subgroups of homotopy groups. Amer. J. Math.91, 729–756 (1969)zbMATHCrossRefMathSciNetGoogle Scholar
- 7.Halperin, S.: Finiteness in the minimal models of Sullivan. Trans. Amer. Math. Soc.230, 173–199 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
- 8.Hansen, V.L.: Equivalence of evaluation fibrations. Invent. Math.23, 163–171 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
- 9.Hansen, V.L.: On the space of maps ofn-manifolds into then-sphere. Trans. Amer. Math. Soc.265, 273–281 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
- 10.Hansen, V.L.: Decomposability of evaluation fibrations and the brace product operation of James. Compositio Math.35, 83–89 (1977)zbMATHMathSciNetGoogle Scholar
- 11.Hilton, P.: On the homotopy groups of the union of spheres. J. London Math. Soc.30, 154–172 (1955)zbMATHCrossRefMathSciNetGoogle Scholar
- 12.Hilton, P., Mislin, G., Roitberg, J.: Localization of nilpotent groups and spaces. (Math. Studies vol. 15) New York: North Holland 1975zbMATHGoogle Scholar
- 13.Milnor, J.: On spaces having the homotopy type of a CW complex. Trans. Amer. Math. Soc.90, 272–280 (1959)CrossRefMathSciNetGoogle Scholar
- 14.Neisendorfer, J.: Lie algebras, coalgebras and rational homotopy theory for nilpotent spaces. Pacific J. Math. (2)74, 429–460 (1978)zbMATHMathSciNetGoogle Scholar
- 15.Neisendorfer, J.: The rational homotopy groups of complete intersections. Illinois J. of Math. (2)23, 175–182 (1979)zbMATHMathSciNetGoogle Scholar
- 16.Neisendorfer, J., Miller, T.: Formal and coformal spaces. Illinois J. Math.22, 565–580 (1978)zbMATHMathSciNetGoogle Scholar
- 17.Quillen, D.: Rational homotopy theory. Ann. Math. (2)90, 205–295 (1969)CrossRefMathSciNetGoogle Scholar
- 18.Samelson, H.: A connection between the Whitehead and the Pontryagin product. Amer. J. Math.75, 744–752 (1953)zbMATHCrossRefMathSciNetGoogle Scholar
- 19.Serre, J.-P.: Groupes d’homotopie et classes de groupes abéliens. Ann. Math.58, 258–294 (1953)CrossRefMathSciNetGoogle Scholar
- 20.Smith, S.: Rational homotopy of the space of self-maps of complexes with finitely many homotopy groups. Trans. Amer. Math. Soc.342, 895–915 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
- 21.Smith, S.: A based Federed spectral sequence and the rational homotopy of function spaces. submitted to Trans. Amer. Math. Soc.Google Scholar
- 22.Tanré, D.: Homotopie rationelle: Modèles de Chen, Quillen, Sullivan. (Lect. Notes in Math., vol. 1025) Berlin Heidelberg New York: Springer 1983zbMATHGoogle Scholar
Copyright information
© Springer-Verlag 1996