Advertisement

Mathematische Zeitschrift

, Volume 221, Issue 1, pp 387–400 | Cite as

Rational evaluation subgroups

  • Samuel Bruce Smith
Article

Keywords

Homotopy Group Whitehead Product Evaluation Subgroup Rational Homotopy Theory Rational Connectivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berstein, I.: Homotopy andC of spaces of category 2. Comment. Math. Helv.35, 9–14 (1961)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Federer, H.: A study of function spaces by spectral sequences. Trans. Amer. Math. Soc.82, 340–361 (1956)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Felix, Y., Halperin, S.: Rational LS-category and its applications. Trans. Amer. Math. Soc.273, 1–37 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Felix, Y., Halperin, S., Thomas, J.-C.: The homotopy Lie algebra for finite complexes. Inst. Hautes Études Sci. Publ. Math.56, 387–410 (1983)Google Scholar
  5. 5.
    Gottlieb, D.H.: On fibre spaces and the evaluation map. Ann. of Math. (2)87, 42–55 (1968).CrossRefMathSciNetGoogle Scholar
  6. 6.
    Gottlieb, D.H.: Evaluation subgroups of homotopy groups. Amer. J. Math.91, 729–756 (1969)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Halperin, S.: Finiteness in the minimal models of Sullivan. Trans. Amer. Math. Soc.230, 173–199 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hansen, V.L.: Equivalence of evaluation fibrations. Invent. Math.23, 163–171 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hansen, V.L.: On the space of maps ofn-manifolds into then-sphere. Trans. Amer. Math. Soc.265, 273–281 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hansen, V.L.: Decomposability of evaluation fibrations and the brace product operation of James. Compositio Math.35, 83–89 (1977)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Hilton, P.: On the homotopy groups of the union of spheres. J. London Math. Soc.30, 154–172 (1955)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hilton, P., Mislin, G., Roitberg, J.: Localization of nilpotent groups and spaces. (Math. Studies vol. 15) New York: North Holland 1975zbMATHGoogle Scholar
  13. 13.
    Milnor, J.: On spaces having the homotopy type of a CW complex. Trans. Amer. Math. Soc.90, 272–280 (1959)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Neisendorfer, J.: Lie algebras, coalgebras and rational homotopy theory for nilpotent spaces. Pacific J. Math. (2)74, 429–460 (1978)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Neisendorfer, J.: The rational homotopy groups of complete intersections. Illinois J. of Math. (2)23, 175–182 (1979)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Neisendorfer, J., Miller, T.: Formal and coformal spaces. Illinois J. Math.22, 565–580 (1978)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Quillen, D.: Rational homotopy theory. Ann. Math. (2)90, 205–295 (1969)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Samelson, H.: A connection between the Whitehead and the Pontryagin product. Amer. J. Math.75, 744–752 (1953)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Serre, J.-P.: Groupes d’homotopie et classes de groupes abéliens. Ann. Math.58, 258–294 (1953)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Smith, S.: Rational homotopy of the space of self-maps of complexes with finitely many homotopy groups. Trans. Amer. Math. Soc.342, 895–915 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Smith, S.: A based Federed spectral sequence and the rational homotopy of function spaces. submitted to Trans. Amer. Math. Soc.Google Scholar
  22. 22.
    Tanré, D.: Homotopie rationelle: Modèles de Chen, Quillen, Sullivan. (Lect. Notes in Math., vol. 1025) Berlin Heidelberg New York: Springer 1983zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Samuel Bruce Smith
    • 1
  1. 1.Department of MathematicsWashington CollegeChestertownUSA

Personalised recommendations