Feynman path integrals on phase space and the metaplectic representation
Article
- 80 Downloads
- 7 Citations
Keywords
Phase Space Heisenberg Group Morse Index Maslov Index Fourier Integral Operator
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.S. Albevario and R. Hoegh-Krohn, Feynman path integrals and the corresponding method of stationary phase, inFeynman Path Integrals, ed. S. Albevario et al, Springer Lecture Notes in Physics106 (1978) 3–57.Google Scholar
- 2.M.F. Atiyah,The Geometry and Physics of Knots, Cambridge University Press, 1990.Google Scholar
- 3.S. Albeverio and R.J. Hoegh-Krohn,Mathematical Theory of Feynman Path Integrals, Springer Lecture Notes in Math523, 1976.Google Scholar
- 4.S. Albeverio and R.J. Hoegh-Krohn, Oscillatory integrals and the method of staionary phase in infinitely many dimensions with applications to the classical limit of quantum mechanics I., Inventiones Math.40 (1977) 59–106.zbMATHCrossRefMathSciNetGoogle Scholar
- 5.S. Albeverio and Z. Breźniak, Finite dimensional approximations approach to oscillatory integrals and stationary phase in infinite dimensions, J. Funct. Anal.113 (1993) 177–244.zbMATHCrossRefMathSciNetGoogle Scholar
- 6.S. Albeverio and Z. Breźniak, Feynman path integrals as infinite dimensional oscillatory integrals: some new developments, preprint.Google Scholar
- 7.S. Albeverio, A.M. Boutet de Monvel Berthier, Z. Brzeźniak, Stationary phase in infinite dimensions by finite approximations: applications to the Schroedinger equation, preprint (1992).Google Scholar
- 8.S. Albeverio, A.M. Boutet de Monvel Berthier, Z. Brzeźniak, The trace formula for Schrödinger operators from infinite dimensional oscillatory integrals, preprint (1993).Google Scholar
- 9.C. Conley and E. Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture of V.I. Arnold,Invent. Math. 73 (1983), 33–49.zbMATHCrossRefMathSciNetGoogle Scholar
- 10.C.C. Conley and E. Zehnder, Morse-type index theory for flows and periodic solutions of Hamiltonian equations,Commun. Pure Appl. Math. 37 (1984), 207–253.zbMATHCrossRefMathSciNetGoogle Scholar
- 11.P.A.M. Dirac, The Lagrangian in quantum mechanics, Phys. Zeitschr. d. Sovyetunion3 (1933) 64–72. (Reprinted in [32].)zbMATHGoogle Scholar
- 12.I. Daubechies and J.R. Klauder, Quantum mechanical path integrals with Wiener measure for all polynomial Hamiltonians,Phys. Rev Letters 52 (1984) 1161;J. Math. Physics 26 (1985) 2239–2256.zbMATHCrossRefMathSciNetGoogle Scholar
- 13.I. Daubechies, J.R. Klauder, and T. Paul, Wiener measures for path integrals with affine kinematic variables,J. Math. Physics 28 (1987) 85–102.zbMATHCrossRefMathSciNetGoogle Scholar
- 14.J.J. Duistermaat, On the Morse index in variational calculus,Advances in Mathematics 21 (1976), 173–195.zbMATHCrossRefMathSciNetGoogle Scholar
- 15.R.P. Feynman, Space-time approach to non-relativistic quantum mechanics,Rev. Mod. Physics 20 (1948), 367–387. (Reprinted in [32].)CrossRefMathSciNetGoogle Scholar
- 16.D. Elworthy and A. Truman, Feynman maps, Cameron-Martin formulae and anharmonic oscillators, Ann. Inst. Henri Poincaré (Physique théorique,41 (1984) 115–142.zbMATHMathSciNetGoogle Scholar
- 17.R.P. Feynman and A.R. Hibbs,Quantum Mechanics and Path Integrals, McGraw-Hill, 1965.Google Scholar
- 18.D. Fujiwara, Remarks on the convergence of Feynman path integrals, Duke Math. J,47 (1980) 559–600.zbMATHCrossRefMathSciNetGoogle Scholar
- 19.V. Guillemin and S. Sternberg,Geometric Asymptotics, AMS Math Surveys14, 1977.Google Scholar
- 20.V. Guillemin and S. Sternberg,Symplectic Techniques in Physics, Cambridge University Press, 1984.Google Scholar
- 21.L. Hörmander, Fourier integral operators I,Acta Math. 127 (1971), 79–183.zbMATHCrossRefMathSciNetGoogle Scholar
- 22.J.B. Keller, Corrected Bohr-Sommerfeld quantum conditions for nonseparable systems,Annals of Physics 4 (1958), 180–188.zbMATHCrossRefMathSciNetGoogle Scholar
- 23.B. Kostant, Quantization and unitary representations, inModern Analysis and its Applications Springer Lecture Notes in Math170 (1970) 87–207.Google Scholar
- 24.J. Leray,Lagrangian Analysis and Quantum Mechanics, MIT press, 1981.Google Scholar
- 25.J.W. Robbin, and D.A. Salamon, A Maslov index for paths, Preprint 1992.Google Scholar
- 26.J.W. Robbin, and D.A. Salamon, Phase functions and path integrals,Proceedings of a conference on Symplectic Geometry, edited by D. Salamon, to appear.Google Scholar
- 27.J.W. Robbin, and D.A. Salamon, The spectral flow and the Maslov index, Preprint 1992.Google Scholar
- 28.J. Rezende, The method of stationary phase for oscillatory integrals on Hilbert spaces, Communications in Math. Physics,101 (1985) 187–206.zbMATHCrossRefMathSciNetGoogle Scholar
- 29.J. Rezende Quantum systems with time-dependent harmonic part and the Morse index, J. Math. Physics25 (1984) 3264–3269.CrossRefMathSciNetGoogle Scholar
- 30.P.L. Robinson and J.H. Rawnsley,The metaplectic representation, Mp C structures and geometric quantization, Memoirs of the American Mathematical Society81, 1989.Google Scholar
- 31.D. Salamon and E. Zehnder, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, to appear in Comm. Pure Appl. Math.Google Scholar
- 32.J. Schwinger (Ed.),Selected papers in Quantum Electrodynamics, Dover Publications, 1958.Google Scholar
- 33.I.E. Segal, Foundations of the theory of dynamical systems of infinitely many degrees of freedom (I),Mat. Fys. Medd. Danske Vid. Selsk. 31 (1959) 1–39.Google Scholar
- 34.I.E. Segal, Transforms for operators and symplectic automorphisms over a locally compact abelian group,Math. Scand. 13 (1963) 31–43.zbMATHMathSciNetGoogle Scholar
- 35.D. Shale, Linear symmetries of free boson fields,Trans. AMS 103 (1962), 149–167.zbMATHCrossRefMathSciNetGoogle Scholar
- 36.B. Simon,Functional Integration and Quantum Physics, Academic Press, 1979.Google Scholar
- 37.J.M. Souriau,Structures des Systemes Dynamiques, Dunod, Paris, 1970.Google Scholar
- 38.J.M. Souriau, Construction explicite de l’indice de Maslov.Group Theoretical Methods in Physics Springer Lecture Notes in Physics50 (1975), 117–148.MathSciNetCrossRefGoogle Scholar
- 39.A: Weil, Sur certaine groupes d’operateurs unitaires,Acta math 111 (1964), 143–211.zbMATHCrossRefMathSciNetGoogle Scholar
- 40.A. Weinstein,Lectures on Symplectic Manifolds, AMS Reg. Conf. Ser. Math.29, 1977.Google Scholar
Copyright information
© Springer-Verlag 1996