Advertisement

Mathematische Zeitschrift

, Volume 221, Issue 1, pp 1–19 | Cite as

Some local-global principles in the arithmetic of algebraic groups over real function fields

  • Nguyeñ Quôć ThĂńg
Article

Keywords

Algebraic Group Division Algebra Dynkin Diagram Hermitian Form Quadratic Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B]
    Borel, A.: Oeuvres — Collected Papers, vol. II. Springer-Verlag, 1983Google Scholar
  2. [BT]
    Borel A., Tits, J.: Groupes réductifs. Pub. Math. I. H. E. S.27, 55–151 (1965)MathSciNetGoogle Scholar
  3. [Bo]
    Bourbaki, N.: Groupes et algèbres de Lie, Chapitres IV–VI. Paris: Hermann 1968Google Scholar
  4. [BrT]
    Bruhat F, Tits, J. Groupes réductifs sur un corps local, Chapitre II. Pub. Math. I. H. E. S.60, 5–84 (1985)Google Scholar
  5. [CTO]
    Colliot-Thélène, J.-L., Ojanguren, M.: Espaces principaux homogènes localement triviaux. Pub. Math. I. H. E. S.75, 97–122 (1992)zbMATHGoogle Scholar
  6. [CTS]
    Colliot-Thélène J.-L., Sansuc, J.-J.: Principal homogeneous spaces under flasque tori: applicaitons. J. Algebra106, 148–205 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  7. [H1]
    Harder, G.: Eine Bemerkung zum schwachen Approximationssatz. Arch. der Math.9, 465–471 (1968)CrossRefMathSciNetGoogle Scholar
  8. [H2]
    Harder, G.: Bericht über neuere Resultate der Galoiskohomologie halbeinfacher Gruppen. Jahresbericht der D. M. V.70, 182–216 (1968)zbMATHMathSciNetGoogle Scholar
  9. [H3]
    Harder, G.: Halbeinfache Gruppenschemata über volständigen Kurven. Inv. Math.6, 107–149 (1968)zbMATHCrossRefMathSciNetGoogle Scholar
  10. [H4]
    Harder, G.: Halbeinfache Gruppenschemata über Dedekindringen, Inv. Math.4, 165–191 (1967)zbMATHCrossRefMathSciNetGoogle Scholar
  11. [H5]
    Harder, G.: Über die Galoiskohomologie halbeinfacher Matrizengruppen, I. Math. Z.90, 404–428 (1965); II, Math. Z.92, 396–415 (1966)zbMATHCrossRefMathSciNetGoogle Scholar
  12. [H6]
    Harder, G.: Über einem Satz von E. Cartan. Abh. Math. Semin. Univ. Hamburg28, 208–214 (1965)zbMATHMathSciNetCrossRefGoogle Scholar
  13. [He1]
    Helminck, A.: Algebraic groups with a commuting pair of involutions and semisimple symetric spaces. Adv. in Math.71, 21–91 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  14. [He2]
    Helminck, A.: Tori invariant under an Involutorial Automophism, I. ibid.85, 1–38; (1991), and also subsequent papers to appear.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [N]
    Nisnevich, Y.: Espaces homogènes principaux rationellement triviaux et arithmétique des schémas en groupes réductifs sur les anneaux de Dedekind. C. R. Acad, Sc. Paris299, 5–8 (1984)zbMATHMathSciNetGoogle Scholar
  16. [PlR]
    Platonov, V.P., Rapinchuk, A.S.: Algebraic groups and Number Theory (Russian) Moscow: Nauka 1991. English translation: Academic Press, 1994Google Scholar
  17. [P]
    Prasad, G.: Elementary proof of a theorem of Bruhat-Tits-Rousseau and of a theorem of Tits. Bull. Soc. Math. France110, 197–202 (1982)zbMATHMathSciNetGoogle Scholar
  18. [PR]
    Prasad, G., Raghunathan, M.S.: On the Kneser-Tits problem. Comment. Math. Helv.60, 107–121 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  19. [R]
    Riehm, C.: The congruence subgroup problem over local fields. Amer. J. Math.92, 771–778 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  20. [Sa]
    Satake, I.: Classification Theory of Semisimple Algebraic Groups. Marcel Dekker, 1971Google Scholar
  21. [Se]
    Serre, J.-P.: Cohomologie Galoisienne, Lec. Notes in Math., vol. 5, Springer-Verlag, 1964Google Scholar
  22. [Sp]
    Springer, T.A.: Sur les formes quadratiques d’indice 0. C.R. Acad. Sci. Paris234, 1517–1519 (1952)zbMATHMathSciNetGoogle Scholar
  23. [St]
    Steinberg, R.: Lectures on Chevalley Groups. Yale University, 1967Google Scholar
  24. [Su]
    Sugiura, M.: Appendix to [Sa]Google Scholar
  25. [T1]
    Nguyen Q. Thang, Hermitian forms over division algebras over real function fields. Manuscripta Math.78, 9–35 (1993); Correction: ibid.82, 445–447 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  26. [T2]
    Nguyen Q. Thang, On some new local-global principles over a real function field (to appear)Google Scholar
  27. [T3]
    Nguyen Q. Thang, On the weak approximation in algebraic groups. Contemp. Math.131, 423–426 (1992)Google Scholar
  28. [Ti1]
    Tits, J.: Classification of semisimple algebraic groups. Proc. Sym. Pure Math. A.M.S.9, 33–62 (1966)MathSciNetGoogle Scholar
  29. [Ti2]
    Tits, J.: Strongly inner anisotropic forms of simple algebraic groups. J. Algebra131, 648–677 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  30. [Ti3]
    Tits, J.: Groupe de Whitehead de groupes algébriques simples (d’après V. Platonov et al.), Lec. Notes in Math.677, 218–236 (1978)MathSciNetCrossRefGoogle Scholar
  31. [To]
    Tomanov, G.: On the structure of algebraic groups over global fields. Math. Ann.288, 515–526 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  32. [We]
    Weisfeiler, B.J.: Semisimple algebraic groups which are split over a quadratic extension. Math. USSR, Izvestya5, 57–72 (1971)CrossRefGoogle Scholar
  33. [W]
    Witt, E.: Zerlegung reeller algebraischer Funktionen in Quadrate. Schiefkörper über reellem Funktionekörper. J. Crelle171, 4–11 (1934)zbMATHGoogle Scholar
  34. [SGA III]
    Sèminaire de la Géometrie Algébrique. Schémas en Groupes, Lectures Notes in math.151–153, Springer-Verlag, 1970Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Nguyeñ Quôć ThĂńg
    • 1
  1. 1.Department of MathematicsMc Master UniversityHamiltonCanada

Personalised recommendations