In Vitro Cellular & Developmental Biology

, Volume 22, Issue 9, pp 500–507 | Cite as

Mechanical effects on endothelial cell morphology: In vitro assessment

  • C. L. Ives
  • S. G. Eskin
  • L. V. McIntire
Article

Summary

Endothelial cells are subjected to fluid mechanical forces which accompany blood flow. These cells become elongated and orient their long axes parallel to the direction of shear stress when the cultured cells are subjected to flow in an in vitro circulatory system. When the substrate is compliant and cyclically deformed, to simulate effects of pressure in the vasculature, the cells elongate an orient perpendicular to the axis of deformation. Cell shape changes are reflected in the alignment of microtubule networks. The systems described provide tools for assessing the individual roles of shear stress, pressure, and mechanical strain on vascular cell structure and function.

Key words

endothelial cells compliance shear stress pressure alignment microtubules 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buck, R. C. Reorientation response of cells to repeated stretch and recoil of the substratum. Exp. Cell Res. 127:470–474; 1980.PubMedCrossRefGoogle Scholar
  2. 2.
    Caro, C. G.; Fitzgerald, J. M.; Schroter, R. C. Atheroma and arterial wall shear. Proc. Soc. Lond. B177:109–159; 1971.CrossRefGoogle Scholar
  3. 3.
    DeForrest, J. M.; Hollis, T. M. Shear stress and aortic histamine synthesis. Am. J. Physiol. 234:H701-H705; 1978.PubMedGoogle Scholar
  4. 4.
    Dewey, C. F. Effects of fluid flow on living vascular cells. J. Biomech. Eng. 106:31–35; 1984.PubMedCrossRefGoogle Scholar
  5. 5.
    Dewey, C. F.; Bussolari, S. R.; Gimbrone, M. A., et al. The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Eng. 103:177–185; 1981.PubMedGoogle Scholar
  6. 6.
    Eskins, S. G.; Ives, C. L.; McIntire, L. V., et al. Response of cultured endothelial cells to steady flow. Microvasc. Res. 28:87–94; 1984.CrossRefGoogle Scholar
  7. 7.
    Frangos, J. A.; Eskin, S. G.; McIntire, L. V., et al. Flow effects on prostacyclin production by cultured human endothelial cells. Science 227:1477–1479; 1985.PubMedCrossRefGoogle Scholar
  8. 8.
    Franke, R. P.; Grafe, M.; Schnittler, H., et al. Induction of human vascular endothelial stress fibers by fluid shear stress. Nature 307:648–649; 1984.PubMedCrossRefGoogle Scholar
  9. 9.
    Fry, D. L. Acute vascular endothelial changes associated with increased blood velocity. Circ. Res. 22:165–197; 1968.PubMedGoogle Scholar
  10. 10.
    Gimbrone, M. A. Culture of vascular endothelium. Prog. Hemost. Thromb. 3:1–28; 1976.PubMedGoogle Scholar
  11. 11.
    Ives, C. L.; Eskin, S. G.; McIntire, L. V., et al. The importance of cell origin and substrate in the kinetics of endothelial cell alignment in response to steady flow. Trans. Am. Soc. Art. Int. Org. 29:209–274; 1983.Google Scholar
  12. 12.
    Langille, B. L.; Adamson, S. L. Relationship between blood flow direction and endothelial cell orientation at arterial branch sites in rabbits and mice. Circ. Res. 48:481–488; 1981.PubMedGoogle Scholar
  13. 13.
    Leung, D. Y. M.; Glagov, S.; Mathews, M. B. A new in vitro system for studying cell response to mechanical stimulation. Exp. Cell Res. 109:285–298; 1977.PubMedCrossRefGoogle Scholar
  14. 14.
    McIntire, L. V.; Eskin, S. G. Mechanical and biochemical aspects of leukocyte interaction with model vessel walls. In: Meiselman, H.; Lichtman, M.; LaCelle, P., eds. White cell mechanics. Alan R. Liss, Inc. New York, NY; 1984:209–219.Google Scholar
  15. 15.
    Nerem, R. M.; Corhill, J. F. The role of fluid mechanics in atherogenesis. J. Biomech. Eng. 102:181–189; 1980.CrossRefPubMedGoogle Scholar
  16. 16.
    Reidy, M. A.; Langille, B. L. The effect of local blood flow patterns on endothelial cell morphology. Exp. Mol. Pathol. 32:276–289; 1980.PubMedCrossRefGoogle Scholar
  17. 17.
    Remuzzi, A.; Dewey, C. F.; Davies, P. F., et al. Orientation of endothelial cells in shear fields in vitro. Biorheology 21:617–630; 1984.PubMedGoogle Scholar
  18. 18.
    Roach, M. R.; Smith N. B. Does high shear stress induced by blood flow lead to atherosclerosis? Perspect. Biol. Med. 26:287–303; 1983.PubMedGoogle Scholar
  19. 19.
    Ross, R. Atherosclerosis: A problem of the biology of arterial wall cells and their interactions with blood components. Atherosclerosis 1:293–311; 1981.Google Scholar
  20. 20.
    Ross, R.; Glomset, J. A. The pathogenesis of atherosclerosis. N. Engl. J. Med. 295:369–377; 420–425; 1976.PubMedCrossRefGoogle Scholar
  21. 21.
    Sottiurai V. S.; Kollros, P.; Glagov, S., et al. Morphologic alteration of cultured arterial smooth muscle cells by cyclic stretching. J. Surg. Res. 35:490–497; 1983.PubMedCrossRefGoogle Scholar
  22. 22.
    White, G. E.; Gimbrone, M. A.; Fujiwara, K. Factors influencing the expression of stress fibers in vascular endothelial cells in situ. J. Cell Biol. 97:416–424; 1983.PubMedCrossRefGoogle Scholar
  23. 23.
    Wong, A. J.; Pollard, T. D.; Herman, I. M. Actin filament stress fibers in vascular endothelial cellsin vivo. Science 217:867–869; 1983.CrossRefGoogle Scholar

Copyright information

© Tissue Culture Association, Inc 1986

Authors and Affiliations

  • C. L. Ives
    • 1
  • S. G. Eskin
    • 1
  • L. V. McIntire
    • 2
  1. 1.Department of SurgeryBaylor College of MedicineHouston
  2. 2.Biomedical Engineering LaboratoryRice UniversityHouston

Personalised recommendations