In Vitro Cellular & Developmental Biology

, Volume 22, Issue 12, pp 689–694 | Cite as

Human blymphocytes immortalization by epstein-barr virus in the presence of cyclosporin a

  • F. Pelloquin
  • J. P. Lamelin
  • G. M. Lenoir


A simple method was devised for the establishment of continuous lymphoblastoid, cell lines (LCL). Unfractionated mononuclear cells collected from healthy donors were infected in vitro by Epstein-Barr Virus (EBV) (strain B95-8) under specific, conditions: an immunosuppressive drug, Cyclosporin-A (CS-A, Sandoz), associated with the use of a feeder layer (MRC-5) led to 100% efficiency of LCL establishment. A bank of 400 LCL was set up for completion of genetic studies. Regression and kinetics of virus-induced transformation were monitored and related to donors' EBV immune status. Mean time of LCL establishment and probability of regression among seropositive donors were not linked to any given value titer of antibodies against Viral Capsid Antigen (VCA) or against Epstein-Barr Nuclear Antigen (EBNA). However, when the anti-VCA:anti-EBNA ratio was considered, this parameter, seemed to be linked to the kinetics of transformation but not to the probability of regression. Once LCL are established, large quantities of human cells can be produced. The complete cellular DNA is available so that any part of it can be scrutinized. Moreover, some of the phenotypic characteristics of these B cells be used for a wide range of investigations.

Key words

cell line Epstein-Barr virus B lymphocytes (human) Cyclosporin-A 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, M. A.; Gusella, J. F. Use of cyclosporin A in establishing Epstein-Barr virus-transformed human lymphoblastoid cell lines. In Vitro 20:856–858; 1984.PubMedGoogle Scholar
  2. 2.
    Bejarano, M. T.; Masucci, M. G.; Ernberg, I., et al. Effect of cyclosporin A (CS-A) on the ability of T lymphocyte subsets to inhibit the proliferation of autologous EBV-transformed B cells. Int. J. Cancer 35: 327–333; 1985.PubMedCrossRefGoogle Scholar
  3. 3.
    Berkel, A. I.; Henle, W.; Henle, G., et al. Epstein-Barr virusrelated patterns in ataxia-telangiectasia. Clin. Exp. Immunol. 35: 196–201; 1979.PubMedGoogle Scholar
  4. 4.
    Bird, A. G.; McLachlan, S. M.; Britton, S. Cyclosporin A promotes spontaneous outgrowthin vitro of Epstein-Barr virus-induced B-cell lines. Nature 289: 300–301; 1981.PubMedCrossRefGoogle Scholar
  5. 5.
    Boyum, A. Separation of leukocytes from blood and bone marrow. Scand. J. Clin. Lab. Invest. 21 (suppl.): 97: 7R; 1968.Google Scholar
  6. 6.
    Boyum, A. Isolation of mononuclear cells and granulocytes from human blood. Scand. J. Clin. Invest. 21 (suppl.): 97: 77–89; 1968.Google Scholar
  7. 7.
    Gaston, J. S. H. Epstein-Barr virus specific cytotoxic T lymphocytes as probes of HLA polymorphisms. Heterogeneity of T-cell restricting determinants associated with the serologically defined HLA-A2 antigen. J. Exp. Med. 158: 280–293; 1983.PubMedCrossRefGoogle Scholar
  8. 8.
    Gusella, J. F.; Wexler, N. S.; Conneally, P. M., et al. A polymorphic DNA marker genetically linked to Huntington's disease. Nature 306: 234–238; 1983.PubMedCrossRefGoogle Scholar
  9. 9.
    Harada, S.; Sakamoto, K.; Seeley, J. K., et al. Immune deficiency in the X-linked lymphoproliferative syndrome. I. Epstein-Barr virus-specific defects. J. Immunol. 129: 2532–2535; 1982.PubMedGoogle Scholar
  10. 10.
    Henderson, E.; Miller, G.; Robinson, J., et al. Efficiency of transformation of lymphocytes by Epstein-Barr virus. Virology 76: 152–163; 1977.PubMedCrossRefGoogle Scholar
  11. 11.
    Henle, G.; Henle, W. Immunofluorescence in cells derived from Burkitt's lymphoma. J. Bacteriol. 91: 1248–1256; 1966.PubMedGoogle Scholar
  12. 12.
    Jacobs, J. P.; Jones, C. M.; Baille, J. P. Characteristics of a human diploid cell designated MRC-5. Nature 227: 168–170; 1970.PubMedCrossRefGoogle Scholar
  13. 13.
    Klein, E.; Massucci, M. G. Cell-mediated immunity against Epstein-Barr virus infected B lymphocytes. Springer Semin. Immunopathol. 5: 63–74; 1982.PubMedGoogle Scholar
  14. 14.
    Lange, B.; Arbetter, J., et al. Longitudinal study of Epstein-Barr virus antibody titers and excretion in pediatric patients with Hodgkin's disease. Int. J. Cancer 22: 521–527; 1978.PubMedCrossRefGoogle Scholar
  15. 15.
    Lombard, Y.; Hartmann, D.; Coupin, G., et al. Human B-like lymphoblastoid cell lines obtained by long-term culture of normal spleen leukocytes. Biol. Cell. 50: 295–298; 1984.PubMedGoogle Scholar
  16. 16.
    Masucci, M. G.; Bejarano, M. T.; Masucci, G., et al. Large granular lymphocytes inhibit the in vitro growth of autologous Epstein-Barr virus-infected B cells. Cell. Immunol. 76: 311–321; 1983.PubMedCrossRefGoogle Scholar
  17. 17.
    Miller, G.; Ender, J. F.; Lisco, H., et al. Establishment of lines from normal human blood leukocytes by cocultivation with a leukocyte line derived from a leukemic child (34189). Proc. Soc. Exp. Biol. Med. 132: 247–252; 1969.PubMedGoogle Scholar
  18. 18.
    Miller, G.; Lisco, H.; Kohn, H. I., et al. Establishment of cell lines from normal adult blood leukocytes by exposure to Epstein-Barr virus and neutralization by human sera with Epstein-Barr virus antibody (35810). Proc. Soc. Exp. Biol. Med. 137: 1459–1467; 1971.PubMedGoogle Scholar
  19. 19.
    Miller, G.; Lipman, M. Relesase of infectious Epstein-Barr virus by transformed marmoset leukocytes. Proc. Natl. Acad. Sci. USA 70: 190–194; 1973.PubMedCrossRefGoogle Scholar
  20. 20.
    Misko, I. S.; Moss, D. J.; Pope, J. H. HLA antigen-related restriction of T lymphocyte cytotoxicity to Epstein-Barr virus. Proc. Natl. Acad. Sci. USA 77: 4247–4250; 1980.PubMedCrossRefGoogle Scholar
  21. 21.
    Misko, I. S.; Kane, R. G.; Pope, J. H. Generationin vitro of HLA-restricted EB virus-specific cytotoxic human T cells by autologous lymphoblastoid cell lines: the role of previous EB virus infection and foetal calf serum. Int. J. Cancer 29: 41–48; 1982.PubMedCrossRefGoogle Scholar
  22. 22.
    Misko, I. S.; Pope, J. H.; Hutter, R., et al. HLA-DR-antigen-associated restriction of EBV-specific cytotoxic T-cell colonies. Int. J. Cancer 33: 239–243; 1984.PubMedCrossRefGoogle Scholar
  23. 23.
    Moss, D. J.; Pope, J. H. Assay of the infectivity of Epstein-Barr virus by transformation of human leukocytesin vitro. J. Gen. Virol. 17: 233–236; 1972.PubMedGoogle Scholar
  24. 24.
    Moss, D. J.; Pope, J. H. E. B. Virus-associated nuclear antigen production and cell proliferation in adult peripheral blood leukocytes inoculated with the QIMR-WIL strain of E. B. Virus. Int. J. Cancer 15: 503–511; 1975.PubMedCrossRefGoogle Scholar
  25. 25.
    Moss, D. J.; Scott, W.; Pope, J. H. An immunological basis for inhibition of transformation of human lymphocytes by EB virus. Int. J. Cancer 15:503–511; 1975.PubMedCrossRefGoogle Scholar
  26. 26.
    Moss, D. J.; Rickinson, A. B.; Pope, J. H. Long-term T-cell mediated immunity to Epstein-Barr virus in man: I. Complete regression of virus-induced transformation in cultures of seropositive donor leukocytes. Int. J. Cancer 22:662–668; 1978.PubMedCrossRefGoogle Scholar
  27. 27.
    Moss, D. J.; Rickinson, A. B.; Pope, J. H. Long-term T-cell mediated immunity to Epstein-Barr virus in man: III Activation of cytotoxic T-cells in, virus infected leukocyte cultures. Int. J. Cancer 23:618–625; 1979.PubMedCrossRefGoogle Scholar
  28. 28.
    Nilsson, K.; Klein, G.; Henle, W., et al. The establishment, of lymphoblastoid, lines from adult, and fetal human lymphoid tissues and its dependence of EBV. Int. J. Cancer 8:443–450; 1971.PubMedGoogle Scholar
  29. 29.
    Pope, J. H. Tranformation by the virusin vitro. In: Epstein, M. A.; Achong, B. G., eds. The Esptein-Barr virus. Berlin: Springer-Verlag 1979:206–223.Google Scholar
  30. 30.
    Reedman, B. M.; Klein, G. Cellular localization of an EBV-associated complement fixing antigen in producer and nonproducer lymphoblastoid cell lines. Int. J. Cancer 11:499–520; 1973.PubMedCrossRefGoogle Scholar
  31. 31.
    Rickinson, A. B.; Moss, D. J.; Pope, J. H. Long-term T-cell mediated immunity to Epstein-Barr virus in man. II. Components necessary for regression in virus-infected leukocyte cultures. Int. J. Cancer 23:610–617; 1979.PubMedCrossRefGoogle Scholar
  32. 32.
    Rickinson, A. B.; Wallace, L. E.; Epstien, M. A. HLA-restricted T-cell recognition of Epstein-Barr virus-infected B cells. Nature 283:865–868; 1980.PubMedCrossRefGoogle Scholar
  33. 33.
    Rickinson, A. B.; Moss, D. J. Epstein-Barr virus-induced transformation: immunological aspects. In: Klein, G., ed. Advances in vival oncology, vol. 3. New York: Raven Press; 1983:213–238.Google Scholar
  34. 34.
    Rickinson, A. B. T-cell control of Herpes virus infections: Lessons from the Epstein-Barr virus. Prog. Brain Res. 59:189–199; 1983.PubMedCrossRefGoogle Scholar
  35. 35.
    Rickinson, A. B.; Rowe, M.; Hart, I. J., et al. T-cell mediated regression of “spontaneous” and of Epstein-Barr virus-induced B cell transformation in vitro: Studies with cyclosporin-A. Cell. Immunol. 87:646–658; 1984.PubMedCrossRefGoogle Scholar
  36. 36.
    Schooley, R. T.; Arbit, D. I.; Henle, W., et al. T-lymphocyte subset interactions in the cell-mediated immune response to Epstein-Barr virus. Cell. Immunol. 86:402–412; 1984.PubMedCrossRefGoogle Scholar
  37. 37.
    Ten Napel, C. H. H.; The, T. H.; Van Egten-Bijker, J., et al. Discordance of Epstein-Barr virus (EBV) specific humoral and cellular immunity in patients with malignant lymphomas: elevated antibody titers and lowered in vitro lymphocytes reactivity. Clin. Exp. Immunol. 34:338–346; 1978.PubMedGoogle Scholar
  38. 38.
    Thorley-Lawson, D. A.; Chess, L.; Strominger, J. L. Suppression ofin-vitro Epstein-Barr virus infection. A new role for adult human T lymphocytes. J. Exp. Med. 146:495–508; 1977.PubMedCrossRefGoogle Scholar
  39. 39.
    White, R.; Leppert, M.; Bishop, D. T., et al. Construction of linkage maps with DNA markers for human chromosomes. Nature 313:101–105; 1985.PubMedCrossRefGoogle Scholar

Copyright information

© Tissue Culture Association, Inc 1986

Authors and Affiliations

  • F. Pelloquin
    • 1
  • J. P. Lamelin
    • 2
  • G. M. Lenoir
    • 1
  1. 1.International Agency for Research on CancerLyon cedex 08France
  2. 2.CNRS-Faculte de Medicine Alexis CarrelLyon cedex 08France

Personalised recommendations