In Vitro Cellular & Developmental Biology

, Volume 23, Issue 8, pp 546–558

In vitro modulation of antioxidant enzymes in normal and malignant renal epithelium

  • An Hang Yang
  • Terry D. Oberley
  • Larry W. Oberley
  • Steven M. Schmid
  • Kenneth B. Cummings


The activities of three antioxidant enzymes, superoxide dismutase, catalase, and glutathione peroxidase, were monitored in isolated human renal adenocarcinoma tissues and in cultured human renal adenocarcinoma cells. The results were compared to the activities of these enzymes in the proposed cell of origin, isolated human proximal tubular tissues, and cultured proximal tubular epithelial cells. Strong modulation of these enzymes by culture conditions was observed in normal cells but not in carcinoma cells. Low levels of cellular lipid peroxidation, as assessed by levels of malondialdehyde (MDA), were observed in adenocarcinoma cells under the culture conditions tested with one exception: greatly elevated MDA was observed in renal adenocarcinoma cells growth on plastic in serum-free, chemically defined medium. This increased lipid peroxidation correlated with a loss of cell viability under these conditions.

Key words

antioxidant enzymes renal epithelium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, R. G.; Newton, R. K.; Sohal, R. S., et al. Alteration in superoxide dismutase, glutathione, and peroxidase in the plasmodial sline moldPhysarum polycephalum during differentiation. J. Cell. Physiol. 124: 413–419; 1985.CrossRefGoogle Scholar
  2. 2.
    Arneson, R. M.; Wander, J. D. Antioxidants in neoplastic cells: II. Isolation and partial characterization of a phenolic antioxidant from differentiated mouse neuroblastoma cells. Lipid 13: 391–398; 1977.CrossRefGoogle Scholar
  3. 3.
    Asayama, K.; Janco, R. L.; Burr, I. M. Selective induction of manganese superoxide dismutase in human monocytes. Am. J. Physiol. 294: C393-C397; 1985.Google Scholar
  4. 4.
    Aust, S. D.; Lipid peroxidation. In: Greenwald, R. A., ed. Handbook of methods for oxygen radical research. Boca Raton, FL: CRC Press; 1985: 203–207.Google Scholar
  5. 5.
    Beauchamp, C.; Fridovich, I. Superoxide dismutase: improved assay and an assay applicable to acrylamide gels. Anal. Biochem. 44: 276–287; 1971.PubMedCrossRefGoogle Scholar
  6. 6.
    Belts, W. H. Detecting oxygen radicals by chemiluminescence. In: Greenwald, R. A., ed. Handbook of methods for oxygen radical research. Boca Raton, FL: CRC Press; 1985; 197–207.Google Scholar
  7. 7.
    Benedetti, A.; Malvaldi, G.; Fulceri, R., et al. Loss of lipid peroxidation as a histochemical marker for preneoplastic hepatocellular foci of rats. Cancer Res. 44: 5712–5717; 1984.PubMedGoogle Scholar
  8. 8.
    Bensinger, R. E.; Johnson, C. M. Luminol assay for superoxide dismutase. Anal. Biochem. 116: 142–145; 1981.PubMedCrossRefGoogle Scholar
  9. 9.
    Bishop, C. T.; Mizra, Z.; Crapo, J. D., et al. Free radical damage to cultured porcine aortic endothelial cells and lung fibroblasts: modulation by culture conditions. In Vitro 21: 229–236; 1985.Google Scholar
  10. 10.
    Bremner, T. A.; Reid, Y. A.; Harrington, G. Superoxide dismutase and peroxidase are coordinately regulated in differentiated and transformed tissues ofNicotiana tabacum. Differentiation 28: 200–204; 1985.PubMedCrossRefGoogle Scholar
  11. 11.
    Cerutti, P. A. Prooxidant states and tumor promotion. Science 227: 375–381; 1985.PubMedCrossRefGoogle Scholar
  12. 12.
    Cheeseman, K. H.; Collins, M.; Proudfoot, K., et al. Studies on lipid peroxidation in normal and tumor tissues. The Novikoff rat liver tumour. Biochem. J. 235: 507–514; 1986.PubMedGoogle Scholar
  13. 13.
    Christman, M. F.; Morgan, R. W.; Jacobson, F. S., et al. Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins inSalmonella typhimurium. Cell 41: 753–762; 1985.PubMedCrossRefGoogle Scholar
  14. 14.
    Crivello, J. F. Interaction of bovine renal mitochondria cytochrome P-450 with antioxidants. Arch. Biochem. Biophys. 248: 551–561; 1986.PubMedCrossRefGoogle Scholar
  15. 15.
    Dees, J. H.; Healfield, B. M.; Reuber, M. D. Adenocarcinoma of the kidney. III. Histogenesis of renal adenocarcinoma induced in rat byN-(4′ fluoro-4-biphenyl) acetamide. JNCI 64: 1537–1545; 1980.PubMedGoogle Scholar
  16. 16.
    Del Rio, L. A.; Gomez-Ortega, M.; Lopez, A. L., et al. A more sensitive modification of the catalase assay with the Clark oxygen electrode. Application to the kinetic study of the pea leaf enzyme. Anal. Biochem. 80: 409–415; 1975.Google Scholar
  17. 17.
    Downs, T. R.; Wilfinger, W. W. Fluorometric quantification of DNA in cells and tissue. Anal. Biochem. 131: 538–547; 1983.PubMedCrossRefGoogle Scholar
  18. 18.
    Eker, P.; Mossige, J.; Johannessen, J. V. Hereditary renal adenomas and adenocarcinomas in rats. Diagn. Histopathol. 4: 99–110; 1981.PubMedGoogle Scholar
  19. 19.
    Fearon, E. R.; Vogelstein, B.; Feinberg, A. P. Somatic deletion and duplication of genes on chromosome 11 in Wilms’ tumor. Nature 309: 176–178; 1984.PubMedCrossRefGoogle Scholar
  20. 20.
    Fernandez-Pol, J. A.; Hamilton, P. D.; Klos, D. J. Correlation betwen the loss of the transformed phenotype and an increase in superoxide dismutase activity in a revertant subclone of sarcoma virus-infected mammalian cells. Cancer Res. 42: 609–617; 1982.PubMedGoogle Scholar
  21. 21.
    Gospodarowicz, D.; Lepine, J.; Massoglia, S., et al. Comparison of the ability of basement membrane produced by corneal endothelial and mouse-derived endodermal PFHR-9 cells to support the proliferation and differentiation of bovine kidney tubular epithelial cells in vitro. J. Cell. Biol. 99: 947–961; 1984.PubMedCrossRefGoogle Scholar
  22. 22.
    Graf, J. D.; Ayala, F. J. Genetic variation for superoxide dismutase level inDrosophila melanogaster. Biochem. Genet. 24; 153–168; 1986.PubMedCrossRefGoogle Scholar
  23. 23.
    Gunzler, W. A.; Kramers, H.; Flohe, L. An improved coupled test procedure for glutathione peroxidase in blood. Z. Klin. Chem. Klin. Biochem. 12: 444–451; 1974.PubMedGoogle Scholar
  24. 24.
    Hames, B. D. An introduction to polyacrylamide gel elctrophoresis. In: Hames, B. D.; Rickwood, D. eds. Gel electrophoresis of proteins—A practical approach. Eynsham, Oxford: IRL Press; 1984: 8–41.Google Scholar
  25. 25.
    Hard, G. C. Identification of a high-frequency model for renal carcinoma by the induction of renal tumors in the mouse with a single dose of streptozotocin. Cancer Res. 45: 703–708; 1985.PubMedGoogle Scholar
  26. 26.
    Hard, G. C.; Toh, B. H. Immunofluorescent characterization of rat kidney tumors according to the distribution of actin as revealed by specific antiactin antibody. Cancer Res. 37: 1618–1623; 1977.PubMedGoogle Scholar
  27. 27.
    Iizuka, S.; Taniguchi, N.; Makita, A. Enzyme-liked immunosorbent assy for human manganese-containing superoxide dismutase and its content in lung cancer. JNCI 72: 1043–1049; 1984.PubMedGoogle Scholar
  28. 28.
    Kaplan, P. L.; Ozanne, B. Transforming growth factors enable transformed and normal cells to grow in serum-free medium. In: Growth of cells in hormonally defined media. Sato, G. H.; Pardee, A. B.; Sirbasku, D. A. eds. New York: Cold Spring Harbor Laboratory Publications; 1982; 333–344.Google Scholar
  29. 29.
    Lechner, J. F.; McClendon, I. A.; LaVeck, M. A. et al. Differential control by platelet factors of squamous differentiation in normal and malignant human bronchial epithelial cells. Cancer Res. 43: 5915–5921; 1983.PubMedGoogle Scholar
  30. 30.
    Li, J. J.; Li, S. A.; Klicka, J. K., et al. Relative carcinogenic activity of various synthetic and natural estrogen in the Syrian hamster kidney. Cancer Res. 43: 5200–5204; 1983.PubMedGoogle Scholar
  31. 31.
    Loven, D. P.; Guernsey, D. L.; Oberley, L. W. Transformation affects superoxide dismutase activity. Int. J. Cancer 33: 783–786; 1984.PubMedCrossRefGoogle Scholar
  32. 32.
    Loven, D. P.; Leeper, D. B.; Oberley, L. W.; Superoxide dismutase levels in Chinese hamster ovary cells and ovarian carcinoma cells after hyperthermia or exposure to cycloheximide. Cancer Res. 45: 3029–3033; 1985.PubMedGoogle Scholar
  33. 33.
    Marklund, S. L.; Westman, N. G.; Lundgren, E., et al. Copper and zinc-containing superoxide dismutase, manganese-containing superoxide dismutase, manganese-containing superoxide dismutase, catalase, and glutathione peroxidase in normal and neoplastic human cell lines and normal human tissues. Cancer Res. 42: 1955–1961; 1982.PubMedGoogle Scholar
  34. 34.
    Masai, T.; Lechner, J. F.; Yookum, G. H., et al. Growth and differentiation of normal and transformed human bronchial epithelial cells. J. Cell Physiol. Supp. 4: 73–81; 1986.CrossRefGoogle Scholar
  35. 35.
    Mitelman, F.; Levan, G. Clustering of aberrations to specific chromosomes in human neoplasms. IV. A survey of 1,871 cases, Hereditas 95: 79–139; 1981.PubMedCrossRefGoogle Scholar
  36. 36.
    Mohandas, J.; Marshall, J. J.; Duggin, G. G., et al. Low activities of glutathione-related enzymes as factors in the genesis of urinary bladder cancer. Cancer Res. 44; 5086–5091; 1984.PubMedGoogle Scholar
  37. 37.
    Oberley, I. W.; Superoxide dismutase and cancer. In: Oberley, L. W., ed. Superoxide dismutase, vol. II. Boca Raton, FL: CRC Press; 1982; 127–165.Google Scholar
  38. 38.
    Oberley, L. W.; Oberley, T. D. Free radicals, cancer and aging. In: Johnson, J. E., ed. Free radicals, aging, and degenerative diseases. New York: Alan R. Liss, Inc.; 1986; 325–371.Google Scholar
  39. 39.
    Oberley, L. W.; Oberley, T. D.; Buettner, G. R. Cell differentiation, aging and cancer: The possible roles of superoxide and superoxide dismutase. Med. Hypotheses 6: 249–268; 1980.PubMedCrossRefGoogle Scholar
  40. 40.
    Oberley, T. D.; Yang, A. H.; Gould-Kostka, J. Selection of kidney cell types in primary glomerular explant outgrowths by in vitro culture conditions. J. Cell Sci. 84: 69–92; 1986.PubMedGoogle Scholar
  41. 41.
    Olshan, A. F.; Wilms’ tumor, overgrowth, and fetal growth factors: a hypothesis. Cancer Genet. Cytogenet. 21: 303–307; 1986.PubMedCrossRefGoogle Scholar
  42. 42.
    Parshad, R.; Sanford, K. K.; Jones, G. M., et al. Susceptibility to fluorescent light-induced chromatid breaks associated with DNA repair deficiency and malignant transformation in culture. Cancer Res. 40: 4415–4419; 1980.PubMedGoogle Scholar
  43. 43.
    Parshad, R.; Gantt, R.; Sanford, K. K. et al. Light-induced chromatid damage in human skin fibroblasts in culture in relation to their neoplastic potenial. Int. J. Cancer 28: 335–340; 1981.PubMedCrossRefGoogle Scholar
  44. 44.
    Pathak, S.; Strong, L. C.; Ferrell, R. E., et al. Familial renal cell carcinoma with a 3,11 chromosome translocation limited to tumor cells. Science 217; 939–941; 1982.PubMedCrossRefGoogle Scholar
  45. 45.
    Perchellet, J.-P.; Perchellet, E. M.; Orten, D. K., et al. Inhibition of the effects of 12-o-tetradecanoylphorbol-13-acetate on mouse epidermal glutathione peroxidase and ornithine decarboxylase activities by glutathione level-rising agents and selenium-containing compounds. Cancer Lett. 26: 283–293; 1985.PubMedCrossRefGoogle Scholar
  46. 46.
    Qutzen, H. C.; Maguire, H. C., The etiology of renal-cell carcinoma. Semin. Oncol. 10: 379–384; 1983.Google Scholar
  47. 47.
    Ross, D. A.; Jackson, R. C.; Weber, G. et al. Decreased content of reduced and oxidized nicotinamide-adenine dinucleotide phosphate in rat hepatomas. Cancer Biochem. Biophys. 6: 61–64; 1982.PubMedGoogle Scholar
  48. 48.
    Roswell, D. F.; White, E. H. The chemiluminescence of luminol and related hydrazides. In: DeLuca, M. A. ed. Methods in enzymology, vol. 57, Bioluminescence and chemiluminescence. New York: Academic Press; 1978; 409–423.Google Scholar
  49. 49.
    Saine, S. E.; Fang, W. F.; Strobel, H. W. Drug metabolism in the Novikoff hepatoma. Evidence for a mixed function oxidase system and partial purification of cytochrome P-450 reductase. Biochim. Biophys. Acta 526: 345–358; 1978.PubMedGoogle Scholar
  50. 50.
    Sanford, K. K.; Parshad, R.; Gantl, R. Responses of human cells in culture to hydrogen peroxide and ralated free radicals generated by visible light: relationship to cancer susceptibility. In: Johnson, J. E. eds. Free radicals, aging, and degenerative diseases, New York, Alan R. Liss, Inc. 1986; 373–394.Google Scholar
  51. 51.
    Simon, L. M.; Robin, E. D.; Theodore, J. Difference in oxygen-dependent regulation of enzymes between tumor and normal cell systems in culture. J. Cell Physiol. 108: 393–400; 1981.PubMedCrossRefGoogle Scholar
  52. 52.
    Sohal, R. S. Relationship between oxygen metabolism, aging and development. Adv. Free. Radical. Biol. Med. 2: 117–160; 1986.Google Scholar
  53. 53.
    Steinert, B. W.; Anderson, P. J.; Oberley, L. W., et al. Kidney glomerular explants in serum-free media: demonstration of intracellular antioxidant enzymes and active oxygen metabolites. In Vitro 22: 285–294; 1986.Google Scholar
  54. 54.
    Swann, P. F.; Kaufman, D. G.; Magee, P. N., et al. Induction of kidney tumors by a single dose of dimethylnitrosamine: dose response and influence of diet and benzo[a]pyrene pretreatment. Br. J. Cancer 41: 285–294; 1980.PubMedGoogle Scholar
  55. 55.
    Thoenes, W.; Storkel, S. T.; Rumpelt, H. J. Histopathology and classification on renal cell tumors (adenomas, oncocytomas and carcinomas). The basic cytological and histopathological elements and their use for diagnostics. Pathol. Res Pract. 181; 125–143; 1986.PubMedGoogle Scholar
  56. 56.
    Tisdale, M. J.; Malmound, M. B. Activities of free radiacal metabolizing enzymes in tumours. Br. J. Cancer 47; 809–812; 1983.PubMedGoogle Scholar
  57. 57.
    Tsuda, H.; Sakata, T.; Masui, T. et al. Modifying effects of butylated hydroxyanisole, ethoxyquin and acetaminophen on induction of neoplastic lesions in rat liver and kidney initiated byN-ethyl-N-hydroxyethylnitrosamine. Carcinogenesis 5: 525–531; 1984.PubMedCrossRefGoogle Scholar
  58. 58.
    Utsumi, K.; Goto, N.; Kanemasa, Y., et al. Inhibition of mitochondrial lipid peroxidation by an agent in cancer cells. Physiol. Chem. Physics 3: 467–480; 1971.Google Scholar
  59. 59.
    Van Der Valk, P.; Gille, J. J. P.; Oostra, A. B., et al. Characterization of an oxygen-tolerant cell line derived from Chinese hamster ovary. Cell Tissue Res. 239: 61–68; 1985.PubMedCrossRefGoogle Scholar
  60. 60.
    Weekes, U. Y. Metabolism of dimethylnitrosamine to mutagenic intermediates by kidney microsomal enzymes and correlation with reported host susceptibility to kidney tumors. JNCI 55: 1199–1208; 1975.PubMedGoogle Scholar
  61. 61.
    Yang, A. H.; Gould-Kostka, J.; Oberley, T. D. In vitro growth and differentiation of human kidney tubular cells on a basement membrane substrate. In Vitro 23: 34–46; 1987.Google Scholar

Copyright information

© Tissue Culture Association, Inc 1987

Authors and Affiliations

  • An Hang Yang
    • 1
  • Terry D. Oberley
    • 1
    • 2
  • Larry W. Oberley
    • 3
  • Steven M. Schmid
    • 4
  • Kenneth B. Cummings
    • 4
    • 5
  1. 1.Department of PathologyUniversity of Wisconsin Medical SchoolMadison
  2. 2.Laboratory Service, Electron Microscopy SectionWilliam S. Middleton Memorial Veterans HospitalMadison
  3. 3.Radiation Research LaboratoryUniversity of Iowa College of MedicineIowa City
  4. 4.Department of Human OncologyUniversity of Wisconsin Medical SchoolMadison
  5. 5.Department of SurgeryUniversity of Wisconsin Medical SchoolMadison

Personalised recommendations