In Vitro Cellular & Developmental Biology

, Volume 21, Issue 5, pp 282–287 | Cite as

Analysis of the cytotoxic effects of light-exposed hepes-containing culture medium

  • J. S. ZiglerJr.
  • J. L. Lepe-Zuniga
  • B. Vistica
  • I. Gery
Article

Summary

The addition ofN-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid (HEPES) to RPMI 1640 medium markedly increases the production of cytotoxic products during exposure of the medium to visible light. The cytotoxicity has been analyzed by measuring uptake of [3H]thymidine by murine thymocytes cultured in preirradiated medium containing 25 mM HEPES. Complete inhibition of thymidine uptake was produced by exposing 50% of the culture medium to light for 3 h before addition of cells. The HEPES-mediated effect requires only that HEPES and riboflavin be exposed to light; other medium constituents are not necessary. Hydrogen peroxide is a principal cytotoxic agent produced in this system. It is demonstrated that most, but not all, of the inhibition of thymidine uptake can be attributed to hydrogen peroxide.

Key words

tissue culture medium HEPES light-induced cytotoxicity hydrogen peroxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Estervig, D.; Wang, R. J. Sister chromatid exchanges and chromosome aberrations in human cells induced by H2O2 and other photoproducts generated in fluorescent light-exposed medium. Photochem. Photobiol. 40: 333–336; 1984.PubMedGoogle Scholar
  2. 2.
    Farrar, J. J.; Fuller-Farrar, J.; Simon, P. L.; Hilfiker, M. L.; Stadler, B. M.; Farrar, W. L. Thymoma production of T cell growth factor (interleukin 2). J. Immunol. 125: 2555–2558; 1980.PubMedGoogle Scholar
  3. 3.
    Gantt, R.; Jones, G. M.; Stephens, E. V.; Baeck, A. E.; Sanford, K. K. Visible light-induced DNA crosslinks in cultured mouse and human cells. Biochim. Biophys. Acta 565: 231–240; 1979.PubMedGoogle Scholar
  4. 4.
    Giblin, F. J.; McCready, J. P.; Reddy, V. N. The role of glutathione metabolism in the detoxification of H2O2 in rabbit lens. Invest. Ophthalmol. Vis. Sci. 22: 330–335; 1982.PubMedGoogle Scholar
  5. 5.
    Griffin, F. M.; Ashland, G.; Capizzi, R. L. Kinetics of phototoxicity of Fischer's medium for L5178Y leukemic cells. Cancer Res. 41: 2241–2248; 1981.PubMedGoogle Scholar
  6. 6.
    Hoffman, M. E.; Mello-Filho, A. C.; Meneghini, R. correlation between cytotoxic effect of hydrogen peroxide and the yield of DNA strand breaks in cells of different species. Biochim. Biophys. Acta 781: 234–238; 1984.Google Scholar
  7. 7.
    Jostes, R. F.; Dewey, W. C.; Hopwood, L. E. Mutagenesis by fluorescent light in mammalian cell cultures. Mutation Res. 42: 139–144; 1977.PubMedGoogle Scholar
  8. 8.
    Lepe-Zuniga, J. L.; Gery, I. Production of intra- and extracellular interleukin-1 (IL-1) by human monocytes. Clin. Immunol. Immunopath. 31: 222–230; 1984.CrossRefGoogle Scholar
  9. 9.
    Parshad, R.; Sanford, K. K.; Jones, G. M.; Tarone, R. E. Fluoresent light-induced chromosome damage and its prevention in mouse cells in culture. Proc. Natl. Acad. Sci. USA 75: 1830–1833; 1978.PubMedCrossRefGoogle Scholar
  10. 10.
    Pirie, A. Glutathione peroxidase in lens and a source of hydrogen peroxide in aqueous humor. Biochem. J. 96: 244–253; 1965.PubMedGoogle Scholar
  11. 11.
    Reid, T. W.; Albert, D. M.; Rabson, A. S.; Russell, P.; Craft, J.; Chu, E. W.; Tralka, T. S.; Wilcox, J. L. Characteristics of an established cell line of retinoblastoma. J. Natl. Cancer Inst. 53: 347–360; 1974.PubMedGoogle Scholar
  12. 12.
    Russell, P.; Fukui, H. N.; Kinoshita, J. H. Properties of an Na-K ATPase inhibitor in cultured lens epithelial cells. Vision Res. 21: 37–39; 1981.PubMedCrossRefGoogle Scholar
  13. 13.
    Silva, A.; MacDonald, H. R.; Conzelmann, A.; Corthesy, P.; Nabholz, M. Rat x mouse T-cell hybrids with inducible specific cytolytic activity. Immunol. Rev. 76: 105–129; 1983.PubMedCrossRefGoogle Scholar
  14. 14.
    Spierenburg, G. T.; Oerlemans, F. T. J. J.; van Laarhoven, J. P. R. M.; deBruyn, C. H. M. M. Phototoxicity ofN-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid-buffered culture media for human leukemic cell lines. Cancer Res. 44: 2253–2254; 1984.PubMedGoogle Scholar
  15. 15.
    Spikes, J. D. Photosensitization. In: Smith, K. C., ed. The Science of Photobiology. New York: Plenum Press; 1977: 87–112.Google Scholar
  16. 16.
    Stoien, S. D.; Wang, R. J. Effect of near-ultraviolet and visible light on mammalian cells in culture II. Formation of toxic photoproducts in tissue culture medium by blacklight. Proc. Natl. Acad. Sci. USA 71: 3961–3965; 1974.PubMedCrossRefGoogle Scholar
  17. 17.
    Warburg, O.; Geissler, A. W.; Lorenz, S. Wirkung von Riboflavin und Luminoflavin aufwachsende Krebszellen. Z. Klin. Chem. Klin. biochem. 6: 467–468; 1968.PubMedGoogle Scholar
  18. 18.
    Wang, R. J. Lethal effect of “daylight” fluorescent light on human cells in tissue-culture medium. Photochem. Photobiol. 21: 373–375; 1975.PubMedGoogle Scholar
  19. 19.
    Wang, R. J.; Nixon, B. T. Identification of hydrogen peroxide as a photoproduct toxic to human cells in tissue-culture medium irradiated with “daylight” fluorescent light. In Vitro 14: 715–721; 1978.PubMedCrossRefGoogle Scholar

Copyright information

© Tissue Culture Association, Inc 1985

Authors and Affiliations

  • J. S. ZiglerJr.
    • 1
  • J. L. Lepe-Zuniga
    • 1
  • B. Vistica
    • 1
  • I. Gery
    • 1
  1. 1.Laboratory of Vision ResearchNational Eye InstituteBethesda

Personalised recommendations