In Vitro

, Volume 17, Issue 12, pp 1100–1110 | Cite as

Trypan blue dye uptake and lactate dehydrogenase in adult rat hepatocytes—Freshly isolated cells, cell suspensions, and primary monolayer cultures

  • Hugo O. Jauregui
  • Nancy T. Hayner
  • James L. Driscoll
  • Rhonda Williams-Holland
  • Milton H. Lipsky
  • Pierre M. Galletti
Conference-American Type Culture Collection


Leakage of lactate dehydrogenase and staining by the vital dye trypan blue were investigated in adult rat hepatocytes at the time of isolation, in suspensions up to 3 h and in primary monolayer cultures up to 3 d. These two parameters of plasma membrane integrity were found to correlate closely in hepatocyte suspensions, but to a lesser degree in monolayer cultures. Functional activity was demonstrated in culture by glucose consumption and lactic acid production. There was a balance of total lactate dehydrogenase (LDH) activity over time for both hepatocyte suspensions and cultures. Loss of LDH activity in the cell fraction was accompanied by a corresponding increase in enzyme activity in the media fraction. Lactate dehydrogenase activity per dye-excluding hepatocyte was calculated to be 9.2±1.5×10−6 IU assayed at 37°C for 25 preparations of isolated hepatocytes.

The results suggest that leakage of cytoplasmic enzyme and vital dye staining are of comparable sensitivity in evaluating hepatocyte preparations. Measurement of LDH leakage offers a less subjective alternative to cell counting procedures and is applicable to both attached and suspended cells.

Key words

trypan blue lactate dehydrogenase hepatocyte cultures isolated hepatocytes vital dye staining enzyme leakage 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Seglen, P. O. Preparation of isolated rat liver cells. Prescott, D. M. ed. Methods in cell biology. Vol. 13. New York: Academic Press; 1976: 29–83.Google Scholar
  2. 2.
    Gebhart, R.; Bellemann, P.; Mecke, D. Metabolic and enzymatic characteristics of adult rat liver parenchymal cells in non-proliferating primary monolayer cultures. Exp. Cell Res. 112: 431–441; 1978.CrossRefGoogle Scholar
  3. 3.
    Fry, J. C.; Jones, C. A.; Weibkin, P.; Bellemann, P.; Bridges, J. W. The enzymic isolation of adult rat hepatocytes in a functional and viable state. Anal. Biochem. 71: 341–350; 1976.PubMedCrossRefGoogle Scholar
  4. 4.
    Bissell, D.; Guzelian, P. S. Phenotypic stability of adult rat hepatocytes in primary monolayer culture. Borek, C.; Williams, G. M. eds., Differentiation and carcinogenesis in liver cell cultures. Vol. 349, New York: New York Academy of Sciences; 1980: 85–98.Google Scholar
  5. 5.
    Krebs, H. A.; Lund, P.; Edwards, M. Criteria of metabolic competence of isolated hepatocytes. Reid, E. ed. Cell populations. England: Ellis Horwood Limited; 1979: 1–6.Google Scholar
  6. 6.
    Baur, H.; Kasperek, S.; Pfaff, E. Criteria of viability of isolated liver cells. Hoppe-Seyler's Z. Physiol. Chem. 356: 827–838; 1975.PubMedGoogle Scholar
  7. 7.
    Crisp, D. M.; Pogson, C. I. Glycolytic and gluconeogenic enzyme activities in parenchymal and non-parenchymal cells from mouse liver. Biochem. J. 126: 1009–1023; 1972.PubMedGoogle Scholar
  8. 8.
    Jeejeebhoy, K.; Phillips, J. M. Isolated mammalian hepatocytes in culture. Gastroenterology 71: 1086–1096; 1976.PubMedGoogle Scholar
  9. 9.
    Grisham, J. W., Use of hepatic cell cultures to detect and evaluate the mechanisms of action of toxic chemicals. Richter, G. W.; Epstein, M. A. eds. International review of experimental pathology. Vol. 20. New York: Academic Press; 1979: 124–210.Google Scholar
  10. 10.
    Bissell, D. M.; Hammaker, L. E.; Meyer, U. A. Parenchymal cells from adult rat liver in nonproliferating monolayer culture. J. Cell Biol. 59: 722–734; 1973.PubMedCrossRefGoogle Scholar
  11. 11.
    Pariza, M. W.; Yager, J. D.; Goldfarb, S.; et al. Biochemical, autoradiographic and electron microscopic studies of adult rat liver parenchymal cells in primary culture. Gerchenson, L. E.; Thompson, E. B. eds. Gene expression and carcinogenesis in cultured liver. New York: Academic Press; 1975: 137–167.Google Scholar
  12. 12.
    Savage, C. R.; Bonney, R. J. Extended expression of differentiated function in primary cultures of adult liver parenchymal cells maintained on nitrocellulose filters. Exp. Cell Res. 114: 307–315; 1978.PubMedCrossRefGoogle Scholar
  13. 13.
    Williams, G. M.; Gunn, J. M. Long term culture of adult rat liver epithelial cells. Exp. Cell Res. 89: 139–142; 1974.PubMedCrossRefGoogle Scholar
  14. 14.
    Phillips, H. J. Dye exclusion tests for cell viability. Kruse, P. F., Jr.; Patterson, M. K., Jr. eds. Tissue culture methods and applications. New York: Academic Press; 1973: 406–408.Google Scholar
  15. 15.
    Tolnai, S. A method for viable cell count. TCA Manual 1: 37–38; 1975.CrossRefGoogle Scholar
  16. 16.
    Lehninger, A. L. Biochemistry. New York: Worth; 1972.Google Scholar
  17. 17.
    Tolman, K. G.; Peterson, P.; Gray, P.; Hammar, S. P. Hepatotoxicity of salicylates in monolayer cell cultures. Gastroenterology 74: 205–208; 1978.PubMedGoogle Scholar
  18. 18.
    Anuforo, D. C.; Acosta, D.; Smith, R. V. Hepatotoxicity studies with primary cultures of rat liver cells. In Vitro 14: 981–987; 1978.PubMedCrossRefGoogle Scholar
  19. 19.
    Dujovne, C. A.; Shoeman, D.; Bianchine, J.; Lasagna, L. Experimental bases for the different hepatotoxicity of erythromycin preparations in man. J. Lab. Clin. Med. 79: 832–844; 1972.PubMedGoogle Scholar
  20. 20.
    Jauregui, H. O.; Hayner, N.; Laliberte, R.; Lipsky, M.; McMillan, P.; Galletti, P. M. Procurement of hepatocytes for a hybrid artificial liver. Trans. Am. Soc. Artif. Intern. Organs 25: 487–492; 1979.PubMedGoogle Scholar
  21. 21.
    Berry, M. N.; Friend, D. S. High yield preparation of isolated rat liver parenchymal cells. J. Cell Biol. 43: 506–520; 1969.PubMedCrossRefGoogle Scholar
  22. 22.
    Williams, G. M.; Bermudez, E.; Scaramuzzino, D. Rat hepatocyte primary cell cultures. III. Improved dissociation and attachment techniques and the enhancement of survival by culture medium. In Vitro 13: 809–817; 1977.PubMedCrossRefGoogle Scholar
  23. 23.
    Scandinavian Society for Clinical Chemistry and Clinical Physiology: Recommended methods for the determination of four enzymes in blood. Scand. J. Clin. Lab Invest. 33: 291; 1974.Google Scholar
  24. 24.
    Bergmeyer, H. U.; Scheibe, P.; Wahlefeld, A. W. Optimization of methods for aspartate aminotransferase and alanine aminotransferase. Clin. Chem. 24: 58–73; 1978.PubMedGoogle Scholar
  25. 25.
    Trinder, P. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann. Clin. Biochem. 6: 24–27; 1969.Google Scholar
  26. 26.
    Henry, R. J. Clinical chemistry principles and technics. New York: Harper and Row; 1968: 664–666.Google Scholar
  27. 27.
    Pesce, M. A.; Strande, C. S. A new micromethod for determination of protein in cerebrospinal fluid and urine. Clin. Chem. 19: 1265–1267; 1973.PubMedGoogle Scholar
  28. 28.
    Elevitch, F. R. Fluorometric techniques in clinical chemistry. Boston: Little and Brown; 1973: 238.Google Scholar
  29. 29.
    Laishes, B. A.; Williams, G. M. Conditions affecting primary cell cultures of functional adult rat hepatocytes. I. The effect of insulin. In Vitro 12: 521–532; 1976.PubMedGoogle Scholar
  30. 30.
    Regoeczi, E.; Taylor, P. The net weight of the rat liver. Growth 42: 451–456; 1978.PubMedGoogle Scholar
  31. 31.
    Berg, T.; Boman, D.; Seglen, P. O. Induction of tryptophan oxygenase in primary rat liver cell suspensions by glucocorticoid hormone. Exp. Cell Res. 72: 571–574; 1972.PubMedCrossRefGoogle Scholar
  32. 32.
    Ontko, J. A. Metabolism of free fatty acids in isolated liver cells. J. Biol. Chem. 247: 1788–1800; 1972.PubMedGoogle Scholar
  33. 33.
    Wilkinson, J. H. Isoenzymes. 2nd ed. London: Chapman and Hall; 1970.Google Scholar
  34. 34.
    Hook, M.; Rubin, K.; Oldberg, A.; Obrink, B.; Vaheri, A. Cold-insoluble globulin mediates the adhesion of rat liver cells to plastic petri dishes. Biochem. Biophys. Res. Commun. 79: 726–733; 1977.PubMedCrossRefGoogle Scholar
  35. 35.
    Deschenes, J.; Valet, J. P.; Marceau, N. Hepatocytes from newborn and weanling rats in monolayer culture: isolation by perfusion, fibronectin mediated adhesion, spreading and functional activities. In Vitro 16: 722–730; 1980.PubMedGoogle Scholar
  36. 36.
    Merchant, D. J.; Kahn, R. H.; Murphy, W. H. Handbook of cell and organ culture. Minneapolis: Burgess Publishing; 1964: 195–197.Google Scholar
  37. 37.
    Searpelli, D. G.; Trump, B. F. Cell injury. Kalamazoo: Upjohn Co.; 1971: 7–64.Google Scholar
  38. 38.
    Acosta, D.; Puchett, M.; McMillan, R. Ischemic myocardial injury in cultured heart cells: leakage of cytoplasmic enzymes from injured cells. In Vitro 14: 728–732; 1978.PubMedCrossRefGoogle Scholar
  39. 39.
    Bissell, D.; Montgomery, M.; Levine, G. A.; Bissell, M. J. Glucose metabolism by adult hepatocytes in primary culture and by cell lines from rat liver. Am. J. Physiol. 234: 122–130; 1978.Google Scholar
  40. 40.
    Ichihara, A.; Nakamura, T.; Tanaka, K.; Tomita, Y.; Aoyama, K.; Kato, S.; Shinno, H. Biochemical functions of adult rat hepatocytes in primary culture. Borek, C.; Williams, G. M. eds. Differentiation and carcinogenesis in liver cell cultures. Vol. 349. New York: New York Academy of Sciences; 1980: 77–84.Google Scholar
  41. 41.
    Sinclair, R. Glucose metabolism and dehydrogenase activities in the cytosol and mitochondria of mouse LS cells in chemostat culture. In Vitro 16: 1076–1084; 1980.PubMedGoogle Scholar

Copyright information

© Tissue Culture Association, Inc 1981

Authors and Affiliations

  • Hugo O. Jauregui
    • 1
  • Nancy T. Hayner
    • 2
  • James L. Driscoll
    • 1
  • Rhonda Williams-Holland
    • 1
  • Milton H. Lipsky
    • 1
  • Pierre M. Galletti
    • 2
  1. 1.Department of PathologyRhode Island HospitalProvidence
  2. 2.Artificial Organ Laboratory, Division of Biology and MedicineBrown UniversityProvidence

Personalised recommendations