Advertisement

In Vitro

, Volume 17, Issue 1, pp 55–60 | Cite as

Simultaneous occurrence of pregnancylike lobuloalveolar morphogenesis and casein-gene expression in a culture of the whole mammary gland

  • Nivedita Ganguly
  • Ranjan Ganguly
  • Nozer M. Mehta
  • Linda R. Crump
  • M. R. Banerjee
Article

Summary

Entire second thoracic mammary glands of estrogen- and progesterone-treated immature virgin BALB/c mice were stimulated to pregnancylike lobuloalveolar morphogenesis after 6 days of incubation with insulin (5 μg/ml), aldosterone (1 μg/ml), growth hormone (5 μg/ml), cortisol (5 μg/ml), and prolactin (80 ng/ml, present as a contaminant in 5 μg/ml growth hormone). The alveolar growth in the glands, as judged by morphological studies, was accompanied by an increase in cell number as a function of incubation time in the hormonal medium. Hybridization of the total RNA from these glands to the casein mRNA specific complementary DNA probe (cDNAcsn) revealed that the level of casein mRNA rises from 0.00012 to 0.005% between 1 and 6 days of incubation. Estimates showed that the concentration of casein mRNA per cell rises 17-fold from 70 molecules on Day 1 to 1200 molecules on Day 6, whereas the number of epithelial cells increases only twofold during the same incubation time. When the growth hormone preparation was totally replaced by 80 ng of prolactin during the 6-day incubation, casein-mRNA levels were found to be 0.0083%. These results demonstrate that a pregnancy-like morphogenesis and concurrent expression of the casein gene in vitro can be achieved in a controlled hormone environment containing high cortisol and low prolactin concentrations. This one-step mammogenesis-lactogenesis culture model should be useful for studying the mechanisms of hormonal regulation of casein-gene expression observed in prepartum mammary gland in vivo.

Key words

BALB/c mice organ culture cortisol prolactin cDNA hybridization casein mRNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lyons, W. R.; Li, C. H.; Cole, R. D.; Johnson, R. E. The hormonal control of mammary growth and lactation. Recent Prog. Horm. Res. 14: 219–248; 1966.Google Scholar
  2. 2.
    Nandi, S. Endocrine control of mouse mammary gland development and function in the C3H/HeCrgl mouse. J. Natl. Cancer Inst. 21: 1039–1063; 1958.PubMedGoogle Scholar
  3. 3.
    Nandi, S.; Bern, H. A. The hormones responsible for lactogenesis in BALB/c/HeCrgl mouse. Gen. Comp. Endocrinol. 1: 195–210; 1961.PubMedCrossRefGoogle Scholar
  4. 4.
    Juergens, W. G.; Stockdale, F. E.; Topper, Y. J.; Elias, J. J. Hormone dependent differentiation of mammary gland in vitro. Proc. Natl. Acad. Sci. USA 54: 629–634; 1965.PubMedCrossRefGoogle Scholar
  5. 5.
    Topper, Y. J. Multiple hormone interaction in development of mammary gland in vitro. Recent Prog. Horm. Res. 26: 387–308; 1970.Google Scholar
  6. 6.
    Turkington, R. W.; Mazumdar, G. C.; Kadohama, N.; MacIndoe, J. H.; Frantz, W. L. Hormonal regulation of gene expression in mammary cells. Recent Prog. Horm. Res. 29: 417–455; 1973.PubMedGoogle Scholar
  7. 7.
    Denamur, R. Ribonucleic acids and ribonucleo-protein particles of the mammary gland. Larson, B. L.; Smith, V. R., eds. Lactation, a comprehensive treatise. vol. 1. New York: Academic Press; 1974: 414–465.Google Scholar
  8. 8.
    Banerjee, M. R. Responses of mammary cells to hormones. Int. Rev. Cytol. 47: 1–97; 1976.PubMedCrossRefGoogle Scholar
  9. 9.
    Terry, P. M.; Ganguly, R.; Ball, E. M.; Banerjee, M. R. Murine mammary gland RNA directed synthesis of casein in heterologous cell-free protein synthesis system. Cell Differ. 4: 113–122; 1975.PubMedCrossRefGoogle Scholar
  10. 10.
    Terry, P. M.; Lin, F. K.; Banerjee, M. R. Responses of mouse mammary gland casein mRNA to corticosteroid action and suckling. Mol. Cell. Endocrinol. 9: 169–182; 1977.PubMedCrossRefGoogle Scholar
  11. 11.
    Banerjee, M. R.; Terry, P. M.; Sakai, S.; Lin, F. K.; Ganguly, R. Hormonal regulation of casein messenger RNA (mRNA). In Vitro 14: 128–139; 1978.PubMedGoogle Scholar
  12. 12.
    Ganguly, R.; Mehta, N. M.; Ganguly, N.; Banerjee, M. R. Glucocorticoid modulation of casein gene transcription in mouse mammary gland. Proc. Natl. Acad. S i. USA 76: 6466–6470; 1979.CrossRefGoogle Scholar
  13. 13.
    Banerjee, M. R.; Ganguly, N.; Mehta, N. M.; Iyer, A. P.; Ganguly, R. Functional differentiation and neoplastic transformation in an isolated whole mammary organ in vitro. McGrath, C.: Brennan, M.; Rich, M., eds. Cell biology of breast cancer. New York: Academic Press. 1980.Google Scholar
  14. 14.
    Tucker, H. A. General endocrinological control of lactation. Larson, B. L.; Smith, V. R., eds. Lactation: A comprehensive treatise. vol. 1. New York: Academic Press; 1974: 277–326.Google Scholar
  15. 15.
    Telang, N. T.; Banerjee, M. R.; Iyer, A. P.; Kundu, A. B. Neoplastic transformation of epithelial cells in whole mammary gland in vitro. Proc. Natl. Acad. Sci. USA 76: 5886–5890; 1979.PubMedCrossRefGoogle Scholar
  16. 16.
    Ichinose, R. R.; Nandi, S. Influence of hormones on lobuloalveolar differentiation of mouse mammary gland in vitro. J. Endocrinol. 35: 331–340. 1966.PubMedGoogle Scholar
  17. 17.
    Banerjee, M. R.; Wood, B. G.; Lin, F. K.; Crump, L. L. Organ culture of the whole mammary gland of the mouse. TCA Manual 2: 457–462; 1976.CrossRefGoogle Scholar
  18. 18.
    Sakai, S.; Banerjee, M. R. Glucocorticoid modulation of prolactin receptors on mammary cells of lactating mice. Biochem. Biophys. Acta 582: 79–88; 1979.PubMedGoogle Scholar
  19. 19.
    DeOme, K. B.; Miyamoto, M. J.; Osborn, R. C.; Guzman, R. C.; Lum, K. Detection of inapparent nodule-transformed cells in the mammary gland tissues of virgin female BALB/cfC3H mice. Cancer Res. 38: 2103–2111; 1978.PubMedGoogle Scholar
  20. 20.
    Mehta, N. M.; Ganguly, N.; Ganguly, R.; Banerjee, M. R. Hormonal modulation of the casein gene expression in a mammogenesis-lactogenesis, two-step culture model of whole mammary gland of the mouse. J. Biol. Chem. 255: 4430–4434; 1980.PubMedGoogle Scholar
  21. 21.
    McKnight, G. S. The induction of ovalbumin and conalbumin mRNA by estrogen and progesterone in chick oviduct explant cultures. Cell 14: 403–413; 1978.PubMedCrossRefGoogle Scholar
  22. 22.
    Lin, F. K.; Banerjee, M. R.; Crump, L. R. Cell cycle-related hormone carcinogen interaction during chemical carcinogen induction of nodule-like mammary lesions in organ culture. Cancer Res. 36: 1607–1614; 1976.PubMedGoogle Scholar
  23. 23.
    Mehta, R. G.; Banerjee, M. R. Action of growth promoting hormones on macromolecular biosynthesis during lobuloalveolar development of the entire mammary gland in organ culture. Acta Endocrinol. 80: 501–516; 1975.PubMedGoogle Scholar
  24. 24.
    Amenomori, Y.; Chen, C. L.; Meites, J. Serum prolactin levels in rats during different reproductive states. Endocrinology 86: 506–510; 1970.PubMedGoogle Scholar
  25. 25.
    Gala, R. R.; Westphal, U. Corticosteroid-binding activity in serum of mouse, rabbit and guinea pig during pregnancy and lactation and possible involvement in the initiation of lactation. Acta Endocrinol. 55: 47–61; 1967.PubMedGoogle Scholar
  26. 26.
    Matusik, R. J.; Rosen, J. M. Prolactin induction of casein mRNA in organ culture. J. Biol. Chem. 253: 2343–2347; 1978.PubMedGoogle Scholar
  27. 27.
    Guyette, W. A.; Matusik, R. J.; Rosen, J. M. Prolactin mediated transcriptional and post-transcriptional control of casein gene expression. Cell 17: 1013–1023; 1979.PubMedCrossRefGoogle Scholar
  28. 28.
    Rosen, J. M.; O'Neal, D. L.; McHugh, J. E.; Comstock, J. P. Progesterone-mediated inhibition of casein mRNA and polysomal casein synthesis in the rat mammary gland during pregnancy. Biochemistry 17: 290–297; 1978.PubMedCrossRefGoogle Scholar
  29. 29.
    Wittliff, J. L. Steroid binding proteins in normal and neoplastic mammary cells. Methods Cancer Res. 11: 293–354; 1975.Google Scholar
  30. 30.
    Shymala, G.; Dickson, C. Relationship between receptor and mammary tumor virus production after stimulation by glucocorticoid. Nature 262: 107–112; 1976.CrossRefGoogle Scholar
  31. 31.
    Fajer, A. B.; Barraclough, C. A. Ovarian secretion of progesterone and 20α-hydroxypregn-4-en-3-one during pseudopregnancy and pregnancy in rats. Endocrinology 81: 617–622; 1967.PubMedCrossRefGoogle Scholar
  32. 32.
    Kuhn, N. J. Progesterone withdrawal as the lactogenic trigger in the rat. J. Endocrinol. 44: 39–54; 1969.PubMedCrossRefGoogle Scholar

Copyright information

© Tissue Culture Association, Inc 1981

Authors and Affiliations

  • Nivedita Ganguly
    • 1
  • Ranjan Ganguly
    • 1
  • Nozer M. Mehta
    • 1
  • Linda R. Crump
    • 1
  • M. R. Banerjee
    • 1
  1. 1.Tumor Biology Laboratory, School of Life SciencesUniversity of NebraskaLincoln

Personalised recommendations