, Volume 5, Issue 1, pp 154–157 | Cite as

Note on an exact test for the 2 × 2 contingency table using the negative binomial model

  • B. M. Bennett


Power Function Contingency Table Negative Binomial Distribution Inductive Inference Moment Generate Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bennett, B. M. and P. Hsu (1960): “On the power function of the exact test for the 2 × 2 contingency table”, Biometrika,47, 393.MathSciNetGoogle Scholar
  2. [2]
    Fisher, R. A. (1935): “The logic of inductive inference”, J. R. Statist. Soc.98, 39.CrossRefGoogle Scholar
  3. [3]
    Irwin, J. O. (1935): “Tests of significance for differences between percentages based on small numbers”, Metron,12, 89.Google Scholar
  4. [4]
    Steyn, H. S. (1959): “OnX 2 - tests for contingency tables of negative multinomial types”, Statistica Neerlandica,13, 433.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Wiid, A. J. B. (1958): “On the moments and regression equations of the fourfold negative and fourfold negative factorial binomial distribution”, Proc. Roy. Soc. Edinburgh,65, 29.zbMATHGoogle Scholar
  6. [6]
    Yates, F. (1934): “Contingency tables involving small numbers”, J. R. Statist. Soc. Suppl.1, 217.CrossRefGoogle Scholar

Copyright information

© Physica-Verlag 1962

Authors and Affiliations

  • B. M. Bennett
    • 1
  1. 1.University of WashingtonSeattle 5USA

Personalised recommendations